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Abstract

This thesis presents two constructions in the area of mathematical semantics
of type systems. First we develop a semantics of a probabilistic programming
language in synthetic topology. Similarly to other branches of synthetic math-
ematics, synthetic topology is an axiomatic approach to topology, the study
of spaces. It changes the axioms of mathematics such that ordinary sets are
endowed with intrinsic topological features. Working in synthetic topology, we
define a notion of distribution on an arbitrary set which takes into account
the intrinsic topology. This enables us to interpret a higher-order probabilistic
programming language with primitives for sampling from continuous distri-
butions. Compared to the analytical approach, synthetic topology allows the
construction of continuous distributions without having to resort to measurable
spaces, which are not cartesian closed and hence cannot account for higher-order
functions.

Second we develop the semantics of dependent type theory in multiverse
models. In categorical semantics we are used to think of individual locally
cartesian closed (lcc) categories as separate models, or universes, of dependent
type theory. Instead, a multiverse model is given by a category of lcc categories
and contains every small lcc category as a submodel. As in ordinary categorical
semantics, there are coherence problems to be solved to make this precise.
Here the multiverse approach allows the use of model category theory (in the
sense of Quillen), which would otherwise be inapplicable. Using the machinery
of algebraically (co)fibrant objects, we solve the coherence problems of the
1-categorical multiverse model and obtain a model of extensional type theory.

We then adapt our model categorical techniques to ∞-categories and inten-
sional type theory. The coherence constructions enable us to interpret weak
finite product and weak identity types. In contrast to the 1-categorical case,
algebraically cofibrant objects are not closed under arbitrary context extensions.
Nevertheless, we show that weak dependent products along base types exist.
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Resumé

Denne afhandling præsenterer to konstruktioner inden for matematisk semantik
af typesystemer. Først udvikler vi en semantik af et probabilistisk programmer-
ingssprog i syntetisk topologi. På samme måde som andre grene af syntetisk
matematik er syntetisk topologi en aksiomatisk tilgang til topologi, studiet af
rum. Det ændrer matematikkens aksiomer, således at almindelige mængder
er udstyret med iboende topologiske træk. Ved at arbejde i syntetisk topologi
definerer vi et begreb om distribution på et vilkårligt sæt, som tager højde for
den iboende topologi. Dette gør os i stand til at fortolke et højere ordens prob-
abilistisk programmeringssprog med primitiver til sampling fra kontinuerlige
distributioner. Sammenlignet med den analytiske tilgang tillader syntetisk
topologi konstruktion af kontinuerte fordelinger uden at skulle ty til målbare
rum, som ikke er kartesisk lukkede og derfor ikke kan tage højde for funktioner
af højere orden.

For det andet udvikler vi semantikken for afhængig typeteori i multi-
versmodeller. I kategorisk semantik er vi vant til at tænke på individuelle
lokalt kartesiske lukkede (lcc) kategorier som separate modeller eller universer
af afhængig typeteori. I stedet er en multiversmodel givet af en kategori af
lcc-kategorier og indeholder hver lille lcc-kategori som en undermodel. Som i
almindelig kategorisk semantik er der sammenhængsproblemer, der skal løses for
at gøre dette præcist. Her tillader multiverstilgangen brugen af modelkategori
(i betydningen Quillen), som ellers ville være uanvendelig. Ved at bruge mask-
ineriet af algebraisk (ko)fibrante objekter løser vi sammenhængsproblemerne i
den 1-kategoriske multiversmodel og opnår en model for ekstensionel typeteori.

Vi tilpasser derefter vores modelkategoriske teknikker til ∞-kategorier og
intensional typeteori. Sammenhængskonstruktionerne gør os i stand til at
fortolke svage endelige produkt- og svage identitetstyper. I modsætning til det
1-kategoriske tilfælde lukkes algebraisk kofibrante objekter ikke under vilkårlige
kontekstudvidelser. Ikke desto mindre viser vi, at der findes svage afhængige
produkter langs basistyper.
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Chapter 1

Overview

The thesis is composed of two loosely connected research projects: First, a
semantics of probabilistic programming based on synthetic topology, which is
the content of Chapter 2. This project was the main focus of the first half of
my time as PhD-student and resulted in a joint publication on the topic with
F. Faissole and B. Spitters [11]. The publication is reproduced verbatim in
Chapter 2.

Second, the development of a novel categorical semantics of dependent type
theory in multiverse models. This line of research was the main focus of the
second half of my time as PhD student. So far, one paper on the 1-categorical
version of the multiverse construction has been published, which is reproduced
in Chapter 3. A manuscript on the adaptation to the ∞-categorical case is
currently in preparation, with most results explained in Chapter 4.

This overview chapter discusses first synthetic topology and its application
to probabilistic programming (Section 1.1), which may serve as an introduction
to Chapter 2. We then define dependent type theory as an extension of the
essentially algebraic theory of covariant cwfs (Section 1.2). Finally, we introduce
the ideas leading to the multiverse model of dependent type theory (Section
1.3), which is worked out in Chapters 3 and 4.

1.1 Probabilistic programming in synthetic topology

As far as this thesis is concerned, a probabilistic program is a program which
has access to a random number generator, but is otherwise pure (i.e. free of
side-effect). Examples are given by the functions of listing 1.1 in ML-like syntax.
The first program is_prime is a naive deterministic algorithm to check the
primality of a given number n. The second program is_probable_prime is a
non-trivial (i.e. non-pure) probabilistic primality test (Solovay–Strassen) which
is correct with high probability.

Listing 1.1: deterministic and probabilistic primality tests
let is_prime n =

1
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if n < 2 then false
else

let rec check i =
if i * i > n then true
else (n mod i <> 0) && check (i + 1)

in check 2

let is_probable_prime n =
if n < 2 then false
else if n = 2 then true
else if n mod 2 = 0 then false
else

let rec check i =
if i >= 10 then true
else

let a = uniform_int n in
mod_exp n a ((n - 1) / 2) <> jacobi a n && check (i + 1)

in check 0

In semantics of programming languages, one associates mathematical ob-
jects, a meaning, to the textual or syntactic description of programs such as
those of listing 1.1. We consider semantics for the following reasons:

1. To determine when a program is correct: Does its semantics agree with
the intended one? For example, we expect the semantics of the program
is_prime of Listing 1.1 to correspond to the mathematical function
N→ {true, false} given by

n 7→

{
true if n is prime
false otherwise

2. To determine when programs are equivalent. For example, we expect
that the two program fragments

let let
x = random_int 10 x = random_int 10
y = random_int 10 y = random_int 10

in in
(x, y) (y, x)

are equivalent even though they are syntactically different (x and y
are swapped in the last line). Reasoning about program equivalence is
important in program optimization to determine which transformations
do not change the program in unintended ways.

3. To specify mathematical objects and reason about them. Here the
application of semantics techniques is in the opposite direction: We
use the language and its associated semantics as a convenient way to
specify the mathematical object, and the latter is our primary goal. More
sophisticated computer languages even allow us to prove properties about
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mathematical objects. This is exemplified by proof assistants based on
dependent type theory. Here the well-typedness of a proof script, which
can be verified automatically by a type checker, is equivalent to the
validity of the encoded mathematical statements. An example of this
technique can be found in the accompanying formalization of Chapter 2,
where the proof assistant Coq is used to prove mathematical statements.

Providing a semantics of probabilistic programs such as those of Listing 1.1 is
the purpose of the ALEA Coq library [6]. The approach followed in ALEA is
to construct a set of sub-probability distributions G(X) on a given set X such
that G is a monad [65] on the category of sets. This allows a deep embedding
of Rml, an extension of pure ML by primitives for random sampling from
discrete probability distributions: Once the interpretations of base types such
as the types are fixed (e.g. the type of natural numbers is interpreted as the
set N of natural numbers), a program p : σ → τ in Rml is interpreted as a
mathematical function JpK : JσK→ G(JτK). Thus the semantics of a program
p assigns to every element x ∈ JσK in the interpretation of the domain σ a
sub-probability distribution JpK(x) on the interpretation JτK of the codomain.
ALEA uses sub-probability distributions instead of probability distributions to
account for non-terminating programs.

Concretely, an element µ ∈ G(X) is a function µ which assigns to each
function f : X → [0, 1] to the unit interval [0, 1] ⊆ R a value µ(f) ∈ [0, 1]
subject to certain conditions. A distribution is thus encoded as the integral
operator on bounded real functions. Note that X is an arbitrary set, and that
no continuity conditions are imposed on f . This does not pose problems for
discrete distributions, where such integrals can be computed as countable sums
over the carrier of the distribution. For continuous distributions on X = R
such as the normal distribution, however, this formalism is inadequate because
only Lebesgue-measurable functions are integrable.

As ALEA is tailored towards the verification of cryptographic protocols,
where discrete distributions predominate, it can ignore these subtleties and stick
with its simple definition of the Giry monad on sets. For other applications such
as machine learning and differential privacy, however, continuous distrbutions
are critical, and a solution to this problem preventing the construction of
continuous distributions must be found.

The obvious approach is to define G not on the category Set of sets, but on
the category Meas of measurable spaces. Indeed, given a measurable space X,
the set of measures on X can be endowed with the structure of a measurable
space G(X), and G is a monad on the category measurable spaces. Our
semantics of Rml would now assign to each function p : σ → τ a measurable
function JσK → G(JτK). When defining the clauses of the interpretation,
one is stuck with function types, however: Function types are interpreted as
exponentials, but the category Meas is not cartesian closed.
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Recently, a promising approach based on quasi-Borel spaces has emerged
[38]. A quasi-Borel space consists of an underlying set X together with a family
MX of functions R→ X subject to a number of conditions. The real numbers
R together with the set of all measurable functions R → R is a quasi-Borel
space on which continuous distributions can be defined. The category of QCB
of quasi-Borel spaces is a quasi-topos and in particular cartesian closed, and
a version of the Giry monad can be defined on QCB. Thus QCB interprets
the terminating fragment of Rml, and the construction can be adapted to
potentially non-terminating programs by considering cpo objects in QCB [84].

Our alternative approach is based on synthetic topology. Similarly to
synthetic approaches other fields, synthetic topology adapts the mathematical
foundations such that all objects definable in the new foundation behave
intrinsically like spaces. Thus all sets have features of topological spaces (there
is a notion of open subset), and every map of sets is continuous. This is in
contrast to standard topology, where topological spaces are defined as sets with
additional structure, and maps between underlying sets of topological spaces
need not be compatible with this structure, i.e. discontinuous.

Synthetic topology equates spaces and sets. Thus exponentials of spaces
can be computed simply as sets of functions; in particular, all exponentials of
spaces exist. More generally, the category of spaces is as well-behaved as the
category of sets. Note that synthetic topology is not compatible with classical
logic, hence we cannot assume the principle of excluded middle. Nevertheless,
it is consistent to assume all of constructive logic, so that Set is a topos.

Topological spaces (in the classical sense) are not equivalent to measurable
spaces, but closely related: Every topology OX on a set X induces measurable
space structure on X via the σ-algebra 〈OX〉 generated by the topology. Most
measurable spaces of interest arise in this fashion from a topological space. A
measure µ : 〈OX〉 → R on a measurable space arising from a topology OX
can be identified with a function OX → R subject to a number of conditions,
a valuation, which is defined on open sets only. The proof of this requires
classical logic. Constructively, it is more convenient to use valuations instead
of measures.

In synthetic topology, we can associate to each set X the set G(X) =
{µ | µ is a valuation on X}, where the notion of a valuation on X is defined
with respect to the intrinsic topology of X. G has monad structure, which
induces a model of Rml as in ALEA, i.e. functions p : σ → τ in Rml are
interpreted as mathematical functions JpK : JσK→ G(JτK). The advantage of
our Giry monad G over the one of ALEA is that we can define continuous
measures: One of the basic axioms of synthetic topology is that the usual
metric topology on R coincides with the intrinsic topology of R, which lets us
define the Lebesgue valuation and distributions with a density with respect to
the Lebesgue valuation.

The question arises whether a version of our model of Rml, which is
constructed based on the axioms of synthetic topology, also exists in the world
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of classical mathematics. This is indeed the case, although we cannot use the
category of sets in classical mathematics due to the anticlassical nature of
synthetic topology. Instead, we can consider a model of synthetic topology
in classical mathematics. We then obtain the model of Rml in classical
mathematics in two steps: First we interpret synthetic topology in a model
built using classical logic, then we interpret Rml in this model of synthetic
topology.

The main examples of models of synthetic topology are first the big topos
Sh(T ) (or gros topos) and second the realizability topos RT(K2) over Kleene’s
second algebra K2. The big topos is parametrized by a subcategory T of Top
which is closed under open inclusions, and given by the sheaves over T with
respect to open covers. Every category of sheaves over a site is a topos and
hence a model of constructive logic. When T is (a skeleton of) the category of
separable metric spaces, then in the internal logic of the big topos over T the
real numbers are metrizable [59, Section 5.4], which is the axiom of synthetic
topology needed to define continuous distributions.

The carrier of Kleene’s second algebra K2 is Baire space NN, the set of
functions on natural numbers. The exponential NN in the realizability topos
RT(K2) given by the partitioned assembly id : K2 → K2. Consequences of this
are that K2 validates function choice (every surjection to NN admits a section),
the continuity principle (the continuity principle (every function NN → N is
ε-δ-continuous) and the Fan principle (every decidable bar is uniform) [87,
Section 4.3]. These facts imply that R is metrizable in the K2 realizability
topos [59, Section 5.3].

An advantage of our model of Rml compared to the model in quasi-Borel
spaces is that our model is based on a topos, whereas QCB is only a quasi-topos.
This distinction becomes visible when we use internal languages to reason about
the semantics: In synthetic topology, we may assume the principle of unique
choice (that every right-unique function is the graph of a function), wheres
unique choice fails in QCB. On the other hand, the Giry monad on QCB is
unconditionally symmetric; in synthetic topology, we can only prove symmetry
for a restricted class of well-behaved spaces (Theorem 2.27).

1.2 Dependent Type Theory

Martin-Löf’s dependent type theory is the basis of modern proof assistants
such as Coq, Agda, Nuprl and Lean. Dependent type theory is usually defined
as a syntax generating preterms and pretypes and a set of deduction rules. The
deduction rules simultaneously define subsets of well-defined types and terms,
the typing relation between terms and types, and the definitional equality
relation on types and terms. For the purpose of this work, dependent type
theory shall instead be understood as a particular essentially algebraic theory.
The advantage of our approach is that we do not have to define substitution
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and its behavior on variables, and that one immediately obtains a notion of
model.

Partial Horn Logic. There exist a plethora of different but equivalent
notions of essentially algebraic theory. The notion we shall use here is partial
Horn logic [67]. Informally, a (finitary) partial Horn logic theory consists of a
set of sort symbols, a set of (partial) operation symbols with assigned finite
arities, and a set of axioms. Optionally we can also consider relation symbols,
but these will not be needed here. Each axiom is of the form

φ1 φ2 . . . φm

ψ1 ψ2 . . . ψn
(1.1)

where the φi and ψj are each of the form t1 = t2 for terms t1, t2. (Palmgren
and Vickers [67] denote this instead by φ1 ∧ · · · ∧ φm ` ψ1 ∧ · · · ∧ ψn.) Terms
are inductively defined depending on sort and operation symbols: There is
a countable supply of variables of each sort, and operation symbols can be
applied to terms if their sorts align with the the arity of the operation symbol.
Every variable occurring in one of the ψj must occur in one of the φi.

A model X of a partial Horn logic theory consists of a carrier set Xs for
each sort symbol and partial functions pX : Xs1 × · · · × Xsn → Xs for each
operation symbol p with arity p : s1 × · · · × sn → s such that all axioms
are satisfied. Here an axiom such as (1.1) holds in X if for all assignments
of elements to variables such that the terms in the φi are well-defined and
the equations φi hold, then also the terms in the ψj are well-defined and
the equations ψj hold. More formally, this can be described as follows. Let
V be the set of variables occurring in the axiom, and let JvK ∈ Xs be an
interpretation of each variable v ∈ V with sort s as an element of X. We
extend J−K recursively to an interpretation of terms over the variables V as
elements of X by Jp(t1, . . . , tn)K = pX(Jt1K, . . . , JtnK). Note that the pX are
partial functions, thus the interpretation of a given term might be undefined.
We write JtK ↓ if J−K is defined on a term t. We further extend J−K to an
interpretation of equations as truth values by

Jt1 = t2K ⇐⇒ Jt1K ↓ ∧Jt2K ↓ ∧Jt1K = Jt2K.

Now X satisfies the axiom if for all interpretations J−K of the variables V as
elements of X the implication

(
∧
i

JφiK) =⇒ (
∧
j

JφjK)

holds.
A morphism f : X → Y of models consists of (total) functions fs :

Xs → Ys for each sort symbol s which commute with the pX and pY : If
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x = pX(x1, . . . , xn) is defined for some operation symbol p and x1, . . . , xn in
X, then pY (f(x1), . . . , f(xn)) is defined and equal to f(x).

As an example, consider the theory of categories. It is given by sorts Ob of
objects and Mor of morphisms. There are operation symbols dom, cod : Mor→
Ob corresponding to domain and codomain of morphisms, and operations
id : Ob → Mor, (− ◦ −) : Mor × Mor → Mor corresponding to identity
morphisms and compositions. The domain operation dom is total, which is
enforced by the following axioms:

f = f

dom(f) = dom(f)

Here f is a variable of sort Mor (as is implied by its usage in the term dom(f)).
This axiom looks tautological at first, but recall that it is interpreted as follows:
For all morphisms f , whenever f = f holds (which is indeed trivial), then
dom(f) is well-defined and dom(f) = dom(f) (the latter is again trivial). Thus
this axiom enforces that the dom must be interpreted as total function in all
models.

There are similar axioms encoding the totality of cod and id. We henceforth
denote self-equality t = t of a term t by t ↓. The composition operation should
be defined precisely on morphisms with compatible domain and codomain,
which is encoded by the following axioms:

cod(f) = dom(g)

(g ◦ f) ↓
(g ◦ f) ↓

cod(f) = dom(g)

Domains and codomains of identity and composed morphisms are enforced by
the following axioms:

f = id(x)

dom(f) = x cod(f) = x

h = g ◦ f
dom(h) = dom(f) cod(h) = cod(g)

Finally, associativity and unit laws can be encoded as follows:

cod(f) = dom(g) cod(g) = dom(h)

(h ◦ g) ◦ f = h ◦ (g ◦ f)

f ↓
f = f ◦ id(dom(f)) f = id(cod(f)) ◦ f

Covariant Categories with Families. There exist several different but
more or less equivalent ways that Martin-Löf type theory can be defined as an
essentially algebraic (or partial Horn logic) theory. We can pick any one of the
usual notions of model of dependent type theory (comprehension categories,
display map categories, categories with attributes, contextual categories, . . . )



8 CHAPTER 1. OVERVIEW

and encode its structure as partial Horn logic theory. The definition of depen-
dent type theory we shall use here is an extension of the theory of covariant
categories with families (cwf), that is, categories (of contexts) equipped with a
functor to the arrow category Set→ (the type and term in context functor). For
the more typical (contravariant) cwfs [27], the functor to Set→ is contravariant,
hence the opposite category functor establishes an equivalence between the
categories of covariant cwfs and contravariant cwfs. The multiverse model is
more naturally expressed as a covariant cwf, hence our use of this notion. Note
that most authors require that cwfs have an empty contexts and are closed
under context extensions; this is additional structure for our covariant cwfs.

Covariant cwfs can be encoded as models of an extension of the partial
Horn logic theory of categories. In addition to the sort Ctx = Ob of objects, or
contexts, and the (context) morphisms Mor, we have sorts Ty of types and Tm
of terms. Each type has an assigned context, and each term has an assigned
type. We thus have operations ctx : Ty→ Ctx and ty : Tm→ Ty and axioms
that enforce that both operations are total:

σ ↓
ctx(σ) ↓

s ↓
ty(s) ↓

Here σ is a variable of sort Ty and s is a variable of sort Tm. We write Γ ` σ
for ctx(σ) = Γ and Γ ` σ1 = σ2 for the conjunction of σ1 = σ2 and ctx(σ1) = Γ.
Similarly, we write Γ ` s : σ for the conjunction of ctx(σ) = Γ and ty(s) = σ,
and Γ ` s1 = s2 : σ for the conjunction of s1 = s2, ty(s) = σ and ctx(σ) = Γ.
When one of these conjunctions appear in a conclusion of an axiom, we mean
several axioms with equal premises, each axiom with one of the clauses of the
conjunction as conclusion.

Substitution of terms and types, i.e. functoriality along context morphisms,
is encoded by operations Mor×Ty→ Ty and Mor×Tm→ Tm, which we both
ambiguously denote by function application. Substitution along morphisms
f : Γ→ ∆ is defined precisely for types and terms in context Γ. This is encoded
by the following axioms:

f : Γ→ ∆ Γ ` σ
∆ ` f(σ)

f(σ) ↓
ctx(σ) = dom(f)

f : Γ→ ∆ Γ ` s : σ

∆ ` f(s) : f(σ)

f(s) ↓
ctx(ty(s)) = dom(f)

Functoriality of substitution is encoded by the following axioms:

g(f(σ)) ↓
(g ◦ f)(σ) = g(f(σ))

g(f(s)) ↓
(g ◦ f)(σ) = g(f(s))

id(Γ)(σ) ↓
id(Γ)(σ) = σ

id(Γ)(s) ↓
id(Γ)(s) = s
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We now describe extensions of the theory of covariant cwfs whose union makes
up the theory of dependent type theory in its intensional and extensional
variants. The two variants are distinguished by whether or not we include the
equality reflection rule for equality/identity types.

The empty context. There is an empty context, i.e. an initial object ·
in the category of contexts. Thus there exists a unique morphism ! : · → Γ to
every context Γ. Empty contexts are given by the following operations and
axioms:

· ↓
Γ ↓

!Γ : · → Γ

f : · → Γ

f = !Γ

Context extensions. An extension of a context Γ by a variable of a given
type Γ ` σ consists of the extended context Γ.σ itself, a coprojection morphism
p = pσ : Γ → Γ.σ and a variable term Γ.σ ` vσ : p(σ) which is initial among
all such data. Thus for every f : Γ→ ∆ and term ∆ ` s : f(σ), there exists a
unique context morphism 〈f, s〉 = 〈f, s〉σ : Γ.σ → ∆ such that 〈f, s〉 ◦ p = f
and s = 〈f, s〉(vσ). The existence of context extensions is enforced by the
following axioms:

Γ ` σ
pσ : Γ→ Γ.σ Γ ` vσ : pσ(σ)

Γ ` σ f : Γ→ ∆ ∆ ` s : f(σ)

〈f, s〉σ : Γ.σ → ∆ 〈f, s〉σ ◦ pσ = f 〈f, s〉σ(vσ) = s

g : Γ.σ → ∆ ∆ ` g(vσ) = s : g(σ)

g = 〈f, s〉σ
Here we omitted axioms asserting that the involved operations are defined only
if the obvious conditions are met. For example, if Γ.σ is defined, then Γ ` σ.

If f = id, we abbreviate 〈f, s〉 = s̄. When dealing with iterated context
extensions, we sometimes denote the context Γ.σ1 . . . σn by Γ.(x1 : σ1) . . . (xn :
σn) to simultaneously introduce names for the variable terms xi = vσn . We
confusion is unlikely, we often suppress substitution along coprojection maps.
Thus we write Γ.σ1 . . . σn ` xi : σi as shorthand for Γ.σ1 . . . σn ` (pσn ◦ · · · ◦
pσi+1)(xi) : (pσn ◦ · · · ◦ pσi)(σi). The map 〈〈f, s1〉, . . . , sn〉 : Γ.σ1 . . . σn → ∆
induced by a morphism f : Γ→ ∆ and appropriate terms si in ∆ is denoted
as 〈f, s1, . . . , sn〉. Context extensions are defined by a universal property and
hence functorial. Thus if f : Γ → ∆ and Γ ` σ, then we obtain a map
f.σ = 〈pf(σ) ◦ f, vf(σ)〉 : Γ.σ → ∆.f(σ).

The unit type. There is a type Unit = UnitΓ in every context Γ and a
term unit = unitΓ of type Unit:

Γ ↓
Γ ` unitΓ : UnitΓ
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The unit type is governed by the following induction principle:

Γ.Unit ` σ Γ ` s : unit(σ)

Γ.Unit ` indUnit(s) : σ

Γ.Unit ` σ Γ ` s : unit(σ)

Γ ` s = unit(indUnit(s))

Thus to construct terms of a type σ depending on a variable of type Unit, it
suffices to provide a term of type unit(σ). In other words, we may assume that
unit is the only term of type Unit.

Note that the induction principle as stated here is slightly abbreviated and
ambiguous: The operation indUnit depends not only on s but also σ and Γ
(although Γ can be recovered as the context of σ), and its first axiom, the
introduction rule, has the following converse:

indUnit(s, σ,Γ) ↓
Γ.Unit ` σ Γ ` s : unit(σ)

Rules of this type will be omitted henceforth because they can be recovered
mechanically from introduction rules: The operator depends implicitly on all
variables appearing in the premise of the rule, and there is a converse to the
introduction rule which states that whenever the operator is defined, then the
premises of the introduction rule hold.

As all other type and term operators, the operators governing the unit type
are stable under substitution, which is encoded by the following rules:

f : Γ→ ∆

∆ ` f(UnitΓ) = Unit∆

f : Γ→ ∆

∆ ` f(unitΓ) = unit∆ : Unit∆

f : Γ→ ∆ Γ.UnitΓ ` σ Γ ` s : unitΓ(σ)

∆.Unit∆ ` (f.UnitΓ)(indUnit(s)) = indUnit(f(s))

(Non-dependent) Product types. There is a binary product type whose
terms are tuples:

Γ ` σ1 Γ ` σ2

Γ ` Prodσ1 σ2

Γ ` s1 : σ1 Γ ` s2 : σ2

Γ ` pair s1 s2 : Prodσ1 σ2

It is governed by the following induction principle. Note that the coprojection
pProdσ1 σ2 : Γ→ Γ.Prodσ1 σ2 is abbreviated as p.

Γ.Prodσ1 σ2 ` τ Γ.(v1 : σ1).(v2 : σ2) ` t : 〈p,pair v1 v2〉(τ)

Γ.Prodσ1 σ2 ` indProd(t) : τ

Γ.Prodσ1 σ2 ` τ Γ.(v1 : σ1).(v2 : σ2) ` t : 〈p,pair v1 v2〉(τ)

〈p,pair v1 v2〉(indProd(t)) = t
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There is again a converse to the introduction rule of the indProd operator, and
the following rules stating stability under substitution:

f : Γ→ ∆ Γ ` σ1 Γ ` σ2

∆ ` f(Prodσ1 σ2) = Prod f(σ1) f(σ2)

f : Γ→ ∆ Γ ` s1 : σ1 Γ ` s2 : σ2

∆ ` f(pair s1 s2) = pair f(s1) f(s2) : Prod f(σ1) f(σ2)

f : Γ→ ∆
Γ.Prodσ1 σ2 ` τ Γ.(v1 : σ1).(v2 : σ2) ` t : 〈p,pair v1 v2〉(τ)

(f.Prodσ1 σ2)(indProd(t)) = indProd((f.σ1.σ2)(t))

Equality/Identity types. Equality and identity types are where ex-
tensional and intensional type theory differ: In extensional type theory, the
distinction between definitional equality (equality in the metatheory) and
propositional equality (inhabitation of the equality type) is collapsed via the
equality reflection rule: If the equality type of two terms is inhabited, then
the two terms are definitionally equal. Intensional type theory retains many
definitional equalities, but the equality reflection rule is omitted.

The canonical terms of intensional identity types are the reflexivity terms:

Γ ` s1 : σ Γ ` s2 : σ

Γ ` Id s1 s2

Γ ` s : σ

Γ ` refl s : Id s s

We have the following induction principle:

Γ.(v1 : σ1).(v2 : σ2).(r : Id v1 v2) ` τ Γ.(u : σ) ` t : 〈p, u, u, reflu〉(τ)

Γ.(v1 : σ1).(v2 : σ2).(r : Id v1 v2) ` indId(t) : τ

Γ.(v1 : σ1).(v2 : σ2).(r : Id v1 v2) ` τ Γ.(u : σ) ` t : 〈p, u, u, reflu〉(τ)

〈p, u, u, reflu〉(indId(t)) = t

Informally, the induction principle asserts that terms r : Id v1 v2 are generated
by the reflexivity term, so that it suffices to consider the case u = v1 = v2 and
r = reflu when constructing terms of a type depending on a variable of type
Id. Crucially, this induction principle does not imply that every two terms of
Id v1 v2 are equal and is thus consistent with non-trivial higher structure on
types. As usual, there are rules for substitution stability:

f : Γ→ ∆ Γ ` s1 : σ Γ ` s2 : σ

f(Id s1 s2) = Id f(s1) f(s2)

f : Γ→ ∆ Γ ` s : σ

f(refl s) = refl f(s)

f : Γ→ ∆
Γ.(v1 : σ).(v2 : σ).(r : Id v1 v2) ` τ Γ.(u : σ) ` t : 〈p, u, u, reflu〉(τ)

(f.σ.σ. Id v1 v2)(indId(t)) = indId((f.σ)(t))
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The extensional equality type is a strictly stronger version of the intensional
identity type (and denoted by Eq instead of Id) because of the equality reflection
rule:

Γ ` r : Eq s1 s2

s1 = s2

The axiom implies via the induction principle not only that s1 = s2 if there is
a term r : Eq s1 s2, but also that r = refl s1 = refl s2.

Dependent sum types. There is a dependent sum type, whose terms are
dependent pairs, i.e. pairs for which the type of the second component depends
on the first component:

Γ ` σ Γ.σ ` τ
Γ ` Σσ τ

Γ ` s : σ Γ ` t : s̄(τ)

Γ ` dpair s t : Σσ τ

In set theory, dependent sums correspond to sets {(s, t) | s ∈ σ, t ∈ τs} where
σ is a set and (τs)s∈σ is a family of sets indexed by σ. The dependent sum
type is governed by the following induction principle:

Γ.Σσ τ ` κ Γ.(s : σ).(t : τ) ` k : 〈p,dpair s t〉(κ)

Γ.Σσ τ ` indΣ(k) : κ

Γ.Σσ τ ` κ Γ.(s : σ).(t : τ) ` k : 〈p,dpair s t〉(κ)

〈p,dpair s t〉(indΣ(k)) = k

The substitution rules are as follows:

f : Γ→ ∆ Γ ` σ Γ.σ ` τ
f(Σσ τ) = Σf(σ) (f.σ)(τ)

f : Γ→ ∆ Γ ` s : σ Γ ` t : s̄(τ)

f(dpair s t) = dpair f(s) f(t)

f : Γ→ ∆ Γ.Σσ τ ` κ Γ.(s : σ).(t : τ) ` k : 〈p,dpair s t〉(κ)

(f.Σσ τ)(indΣ(k)) = indΣ((f.σ.τ)(k))

Dependent product types. There exists a type of functions in which
the type of the value of the function on some argument may depend on the
argument:

Γ ` σ Γ.σ ` τ
Γ ` Πσ τ

Γ ` σ Γ.σ ` t : τ

Γ ` λ t : Πσ τ

Γ ` u : Πσ τ

Γ.σ ` appu : τ

Γ.σ ` t : τ

t = app (λ t)

Γ ` u : Πσ τ

u = λ (appu)

Thus terms of type Πσ τ are in bijection to terms depending on a variable of
type σ of type τ . In set theory, the dependent function type corresponds to
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the the cartesian product
∏
s∈σ

τs of a family of sets (τs)s∈σ indexed by σ. The

substitution rules are as follows:

f : Γ→ ∆ Γ ` σ Γ.σ ` τ
f(Πσ τ) = Πf(σ) (f.σ)(τ)

f : Γ→ ∆ Γ ` σ Γ.σ ` t : τ

f(λ t) = λ ((f.σ)(t))

f : Γ→ ∆ Γ ` u : Πσ τ

(f.σ)(appu) = app f(u)

In intensional type theory, one sometimes considers the function extensionality
axiom

Γ.σ ` r : Id t1 t2

Γ ` funext r : Id (λ t1) (λ t2)

and an associated substitution stability axiom. The operator funext can be
constructed uniquely from the equality reflection rule, hence the function
extensionality axiom is superfluous in extensional type theory. For the purpose
of this work, we consider function extensionality to be part of intensional type
theory.

1.3 Semantics of dependent type theory in lcc
categories

The relation of dependent type theory and locally cartesian closed (lcc) cate-
gories has been explored since at least Seely’s seminal paper [75]. A category
C is lcc if it is finitely complete and for each morphism f : x → y in C, the
pullback functor f∗ : C/y → C/x has a right adjoint Πf . Seely observed that
the rules of extensional dependent type theory resemble the axioms of locally
cartesian closed (lcc) category. To make this analogy precise, Seely gave an
interpretation of the syntax of dependent type theory as objects and morphisms
in a given lcc category C. In our terminology, this amounts to defining covariant
cwf structure based on C. This covariant cwf is given as follows:

• The set of contexts is the set of objects of C.

• The set of context morphisms is the set of morphisms in C, but their
direction is reversed: If f is a morphism in C from ∆ to Γ, then we
consider it as a (covariant) context morphisms from Γ to ∆. Thus the
category of contexts and (covariant) context morphisms is given by Cop.

• A type in context Γ is a morphism σ : dom(σ)→ Γ with codomain Γ.

• A term of type σ : dom(σ)→ Γ is a section to σ, i.e. a map s : Γ→ dom(σ)
such that σ ◦ s = id : Γ→ Γ.
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• Substitution is given by pullback: If σ is a type in context Γ and f : Γ→ ∆
is a context morphism, then f(σ) is defined by a pullback square

dom(f(σ)) dom(σ)

∆ Γ

f(σ)
y

σ

f

in C.

Conversely, Seely showed that models of dependent type theory give rise to
lcc categories. Seely’s correspondence extends to dependent type theories with
more type formers and additional structure on lcc categories. For example,
natural number types can be interpreted in lcc categories with a natural numbers
objects, sum types correspond coproducts and so forth.

Unfortunately, Seely’s interpretation suffers from coherence issues, which
is why this covariant cwf is not well-defined: The axioms of (covariant) cwfs
demand certain equalities among types which hold in the interpretation only
up to isomorphism; we ignore this issue for now and will come back to this
issue later.

Seely’s construction allows the reduction of proof-theoretic problems to
category-theoretic problems. By exhibiting suitable lcc categories, one can
show that a given statement is not provable in dependent type theory, or
one can show that an extension of dependent type theory by a given axiom
is consistent. Lcc categories are abundant: Every elementary topos, and in
particular every Grothendieck topos, is lcc. For example, the big topos of
sheaves over topological spaces we discussed in Section 1.1 shows that one
can consistently assume in dependent type theory that all real functions are
continuous, and that Lemma of the excluded third does not follow from the
axioms. The realizability topos shows that the internal Church-Turing thesis
is consistent with dependent type theory, i.e. that every function of natural
numbers is computable.

In the other direction, Seely’s interpretation allows us to reduce problems
concerning lcc categories to extensional type theory. For example, a proof of
associativity of multiplication of natural numbers in dependent type theory
implies via Seely’s interpretation that the morphism N×N→ N corresponding
to multiplication in every lcc category with natural numbers object N commutes
with the isomorphism N× N ∼= N× N exchanging the coordinates. This can
be proved without type theory purely diagrammatically, but the proof in type
theory is arguably easier to follow.

Underlying Seely’s interpretation is the idea that every suitably rich (in
this case: lcc) category is a separate model, or universe, of mathematics. Once
a category C is fixed, the interpretation is defined in terms of data of C only. In
Chapters 3 and 4, we explore a different point of view. Instead of regarding each
C as a separate universe, we explore the category of all C as a mathematical
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universe. Since our mathematical universe is composed of all (small) universes,
we refer to it as the multiverse model.

Crucial to the change of perspective that leads to the multiverse model is
how we interpret contexts, i.e. what it means to declare for some type σ: “Let
x be in σ.” In the scope of this declaration, we may invoke the same deduction
rules as before, but additionally there is a new constant x of type σ. We can
regard this temporary change of axiom systems: The old axioms are extended
by a new constant symbol x and the axiom that x is of type σ.

Proof-theoretically this may be expressed as follows. Consider a dependent
type theory T , i.e. a partial Horn logic theory which is an extension of the
theory described in Section 1.2, and suppose that there is a derivation of · ` σ.
Let T ′ be the dependent type theory which is obtained from T by adding a
new constant x in the empty context of type σ. Then there is a bijection of
types and terms (v : σ) ` t : τ derivable in T and types and terms · ` t′ : τ ′

derivable in T ′.
The different contexts of dependent type theory thus parametrize a class of

extensions of the underlying axiom system. If every lcc category is a separate
mathematical universe, and the contexts of dependent type theory represent
different axiom systems, it is natural from this point of view to interpret every
context as a separate lcc category.

We should now construct a covariant cwf corresponding to the multiverse
model to make our intuition precise. As Seely’s original interpretation, however,
our first attempt at defining this covariant cwf is not well-defined due to
coherence issues: Where the axioms of type theory demand an equality of types
we can only provide an isomorphism. Nevertheless, the relative simplicity of
the naive construction is instructive to build intuition for the more complicated
constructions needed to resolve said coherence issues.

The set of contexts of our proposed multiverse model is the set of all lcc
categories. (Here and later we ignore size issues; these can be resolved by
assuming sufficiently large cardinals and working with small lcc categories.)
Let Γ be an lcc category. What are the types Γ ` σ in the multiverse model?
An arbitrary category C is a generalization of the category of sets, and types
correspond to sets. By analogy, we define a type Γ ` σ to be an object of Γ.
The sort of all types in all contexts is thus interpreted as coproduct qΓ Ob Γ
ranging over all lcc categories Γ.

Less obvious is how we should interpret the set of terms Γ ` s : σ: These
should be interpreted as morphisms in Γ, but morphisms have a domain and
a codomain, whereas a term s : σ depends on a single type only. Note that
elements of a set X are in bijection to maps {∗} → X for some singleton set
{∗}. The generalization of the singleton set to a general category is a terminal
object 1, which is a finite limit and thus exists in every lcc category C. By
analogy, we define a term Γ ` s : σ for some object σ in an lcc category to be a
morphism s : 1→ σ in C.

Finally we have to interpret the sort of context morphisms. These must
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be defined such that a context morphism f : Γ→ ∆ induces types and terms
∆ ` f(s) : f(σ) for all Γ ` s : σ. The natural notion of map between categories
is a functor. Objects Γ ` σ are objects in Γ, hence we may apply a functor
f : Γ → ∆ to σ to obtain the substitution Γ ` f(σ). Terms Γ ` s : σ
are morphisms s : 1 → σ, hence application of f results in a morphism
f(s) : f(1)→ f(σ). For f(s) to be a term of type f(σ) we need that f(1) is the
terminal object of ∆, i.e. that f preserves the terminal object. Thus we may
only regard a functor f : Γ→ ∆ as a context morphism if it preserves terminal
objects. The type formers will be interpreted in terms of other structure of lcc
categories, i.e. the finite limits and right adjoints to pullbacks. Type formers
commute with substitution, and it will turn out that the semantical counterpart
to this is that f preserves finite limits and right adjoints to pullbacks, i.e. that
it is an lcc functor. We thus define a context morphisms f : Γ → ∆ in the
multiverse model to be an lcc functor.

Next let us define context extensions in the multiverse model. Context
extensions satisfy a universal property and are thus determined uniquely. Given
an lcc category Γ and an object σ in Γ, we have to find an lcc category Γ.σ
which is obtained from Γ by freely adjoining a morphisms v : 1→ σ. That is,
lcc functors Γ.σ → ∆ have to correspond to pairs of lcc functors f : Γ → ∆
and morphisms s : 1 → f(σ) in ∆. It turns out that the slice category Γ/σ
has the required universal property: The coprojection is given by the pullback
functor σ∗ : Γ ∼= Γ/1 → Γ/σ along the unique map σ → 1. Slice categories of
lcc categories are again lcc, and pullback functors are lcc. Thus σ∗ is a context
morphisms. The terminal object of Γ/σ is the identity on σ, so the diagonal
map d in

σ σ × σ domσ∗(σ)

σ

d

id

∼=

σ∗(σ)

defines a term Γ/σ ` v : σ∗(σ). If f : Γ→ ∆ is an lcc functor and ∆ ` s : f(σ),
then we obtain a functor

Γ/σ
f/σ−−→ ∆/f(σ)

s∗−→ ∆/1
∼= ∆

under which v corresponds to s. Since every object of Γ/σ can be obtained
as pullback along v of a map in the image of σ∗, it follows that Γ/σ has the
required universal property of a context extension.

The type and term formers are interpreted using their categorical counter-
parts. For example, the unit type is interpreted as a terminal object and its
induction principle via the isomorphism Γ/1 ∼= Γ. Product types Prodσ1 σ2 are
interpreted as categorical product σ1 × σ2, and the induction principle is inter-
preted via the isomorphism (Γ/σ1

)/σ∗1(σ2)
∼= Γ/σ1×σ2

. Equality types Eq s1 s2

of terms s1, s2 : σ are interpreted as equalizers of diagrams s1, s2 : 1 ⇒ σ.
Dependent sums Γ ` Σσ τ of types Γ ` σ and Γ/σ ` τ are given by dom(τ).
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Note that pullback functors f∗ are right adjoints, with left adjoints Σf given
by composition with f . Dependent sum types in the multiverse model may
thus also be described via the right adjoint Σσ : Γ/σ → Γ/1 → Γ, where we
identify σ with the unique map σ → 1 to the terminal object. The induction
principle of dependent sum types is a reformulation of the universal property of
Σσ(τ) that characterizes a left adjoint to σ∗. Dually, dependent product types
are interpreted via the right adjoint Πσ to pullback along σ.

The multiverse model is, to my knowledge, a novel idea in type theory. In
topos theory and geometric logic, however, the idea that logic can be applied
not only for constructions within individual categories, but also as a tool to
relate different categories, is pervasive. Vickers [89, p. 468] writes:

Suppose T1 and T2 are two geometric theories. By definition of clas-
sifying toposes, a geometric morphism f : [T1]→ [T2] is equivalent
to a model M of T2 in S[T1]. Now all the objects and morphisms
in S[T1] are constructed out of the generic model G of T1, and
indeed can be constructed using finite limits and arbitrary colimits.
It follows that M too has to be constructed out of the generic
T1-model. Let us portray this naively as a model transformation.

1. We declare “Let G be a model of T1.”

2. We construct a model M of T2.

Within the scope of the declaration 1, our logic and mathematics are
to be interpreted in S[T1] with G the generic T1-model. This means
it must be constructively valid. We thus have a temporary change of
mathematics. Back outside the scope of the declaration, returning
to our ambient mathematics, we find our model construction gives
a geometric morphism f : [T1]→ [T2].

Here we find explicitly the notion that introducing an indeterminate amounts
to a temporary change of mathematics.

Note that Vickers writes not only about introducing a variable of a given
type, but about general geometric theories. For example, we might instantiate
T1 with the theory of an indeterminate type variable, so that the type itself is
the indeterminate instead of the term variable of preexisting type. In this case
S[T1] is the object classifier, which is given by freely adjoining a new object to
the ambient topos.

The analogous construction for covariant cwfs is a context extension by an
indeterminate type, a type classifier : Given a context Γ we would find a map
p : Γ → Γ.T to a context Γ.T and a type Γ.T ` A such that (p,A) is initial
among such data. Seely’s semantics cannot easily account for type classifiers
because the context Γ.T must be given by an object in an lcc category C. At
most one can demand that C has a weak object classifiers [81], which correspond
to universe types, but then one has to put size restrictions on the type variable
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A to avoid Girard’s paradox [19]. Furthermore, adding universe types to the
type theory increases proof-theoretic strength, which can be undesirable. In
our informal multiverse model, type classifiers Γ.T can be obtained from an lcc
category Γ by freely adjoining an object A to Γ. However, the construction
we use to rectify the coherence issues of the multiverse model does not apply
to type classifiers. have to add this somewhere We must thus leave a proper
treatment of type classifiers and other more elaborate constructions for future
work.

Coherence. As mentioned earlier, Seely’s models and the naive multiverse
model suffer from coherence issues. Consider Seely’s interpretation. The first
issue is that substitution of types and terms Γ ` s : σ along context morphisms
f : Γ → ∆ must be functorial in f . Thus if f = id, then f(σ) = σ and
f(s) = s, and if g : ∆→ E, then g(f(σ)) = (g ◦ f)(σ) and g(f(s)) = (g ◦ f)(s).
Recall that Seely interprets (covariant) context morphisms f : Γ→ ∆ as maps
f : ∆→ Γ in an lcc category C, with substitution given by the pullback functor
f∗ along f . But the assignment f 7→ f∗ is only pseudo-functorial: Pullback
along identity morphisms is isomorphic but not equal to the identity functor,
and there is a natural isomorphism f∗(g∗(σ)) ∼= (g ◦ f)∗(σ) if g : Γ→ E and σ
is a map to E, but we require an equality.

The second issue arises with pullback stability of type constructors. Pullback
functors are indeed lcc functors and hence preserve the universal properties of
objects. However, type formers are interpreted as a choice of universal objects,
and this choice need not be preserved up to equality under pullback, only up
to canonical isomorphism.

The multiverse model suffers from similar but slightly different coherence
issues. Here substitution is defined by application of lcc functors, and clearly
(g ◦ f)(X) = g(f(X)) for lcc functors ∆

f−→ Γ
g−→ E and morphisms or objects

X in ∆. Thus substitution is functorial in the multiverse model.
There is a new problem that is not present in Seely’s interpretation, however.

Seely interprets context extension of a type Γ ` σ, i.e. a morphism with
codomain Γ, as the domain of σ. This context extension does indeed satisfy
the universal property of a context extension. In the multiverse model, context
extensions Γ.σ = Γ/σ are interpreted as slice categories. The slice category
Γ/σ does indeed satisfy the universal property of context extensions, but only
bicategorically so: Thus the map 〈f, s〉 : Γ/σ → ∆ induced by an lcc functor
f : Γ→ ∆ and a morphism s : 1→ f(σ) in ∆ is unique up to unique natural
isomorphism.

The problem with preservation of type constructors is shared among the
multiverse model and Seely’s models: Choices of universal objects in lcc
categories are preserved not up to equality but only up to isomorphism by lcc
functors and in particular by pullback functors. As far as coherence issues are
concerned, the multiverse model thus shifts the problem from functoriality of
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substitution to the universal property of context extensions.
There exist well-known variants of Seely’s construction which do not suffer

from coherence issues. The idea is generally to replace the set of types in
a context Γ by a suitably equivalent set such that pullbacks along maps
f : ∆→ Γ can be constructed functorially and strictly compatible with type
formers [40, 61]. There also exist syntactical methods based on rewriting
[24, 25].

The multiverse model has not been considered in the context of type theory.
Thus no coherence construction for this model have been considered before,
and methods rectifying Seely’s models are inapplicable. The development of an
entirely new method is the main content of Chapters 3 (for the 1-categorical
case) and 4 (for the ∞-categorical case).

Model category theory & coherence

Our coherence construction for the multiverse model makes heavy use of model
category category. The notion of a model category was originally introduced by
[69]. The term “model category”, is short for “category of models for a homotopy
theory”. Thus model categories should not be confused with covariant cwfs,
which are models of dependent type theory. A model category consists of an
underlying complete and cocomplete categoryM and three distinguished classes
of morphisms called the fibrations, the cofibrations and the weak equivalences
subject to a number of axioms [43]. A model categoryM is meant to present the
higher categorical localizationW−1M, whereW is the set of weak equivalences.
The classes of cofibrations and fibrations are auxiliary data that help connect
1-categorical notions in M to the corresponding higher categorical notions
which hold in W−1M.

For example, it is not generally true that a map X → Y in the localization
W−1M is in the image of the functor M → W−1M, but it is true if X is
cofibrant and Y is fibrant. Or consider 1-categorical pushouts B1qAB2 of spans
B1

i1←− A i2−→ B2 inM. It does not generally hold that natural transformations
of spans whose components are weak equivalences induce weak equivalences on
pushouts. This does, however, hold if we restrict to spans of cofibrant objects
for which one of i1 or i2 is a cofibration. In this case, the 1-categorical pushout
is a homotopy pushout and satisfies a universal property also with respect to
homotopies and general higher cells.

The multiverse model is an attempt at endowing a higher category (the
category of lcc categories, lcc functors and natural isomorphisms) with covariant
cwf structure, which is structure borne by a 1-category. Our coherence problems
are thus a mismatch of 1-categorical properties demanded by type theory and
the higher categorical properties which hold semantically. Since it is concerned
precisely with the reduction of higher categorical to 1-categorical phenomena,
model category theory is suitable framework to discuss and ultimately solve
coherence problems.
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Our application of model category theory can be structured in terms of the
model categories we consider, each a transform and Quillen equivalent to the
previous one:

1. The category Lcc of lcc sketches. An lcc sketch is a category equipped
with sets of diagrams marked as finite limits or dependent products, without the
need for these diagrams to actually satisfy the corresponding universal property.
Intuitively, lcc sketches are presentations for a fully realized lcc category, much
like a group can be presented using generators and relations.

The model category structure on Lcc formalizes this: The fibrant lcc sketches
are the lcc categories in which precisely lcc structure is marked as such. Thus
the subcategory of fibrant lcc sketches agrees with the usual category of lcc
categories, and the fibrant replacement functor assigns to every lcc sketch the lcc
category generated by it. Note that the lcc category generated by an lcc sketch
is determined only up to contractible equivalence, hence the generation of the
lcc category from a sketch can not be expressed as a 1-categorical adjunction.

A fibrant lcc sketch (i.e. lcc category) C “has” finite limits and dependent
product in the sense that all such universal objects exist, but there is no
canonical way of choosing them. The existence of these universal objects is
guaranteed by lifts

A C

B

j

a

b
(1.2)

against a generating set of trivial cofibrations j : A→ B, which by definition
must exist for fibrant C. For example, there is a trivial cofibration j in Lcc for
which A is the discrete category of two objects x1, x2, and B is the freestanding
cospan x1 ↔ y → x2 which is marked as supposed to be a product cone. Maps
a : A → C then correspond to pairs of objects in C, and lifts b correspond
to cones over the pair of objects which are marked as product cones. Other
trivial cofibrations then enforce that cones marked as products indeed satisfy
the universal property of products.

In detail, we construct the model category Lcc from Cat, the category of
small categories with its canonical model structure, using an approach due to
Isaev [47]. First we define a number of categories corresponding to the shape of
universal objects of lcc categories. This induces a model category of lcc-marked
categories. We then localize the model category of lcc-marked categories at a
set of morphisms corresponding to the properties we wish to enforce on marked
diagrams to obtain Lcc.

2. The category sLcc of strict lcc categories. Where the fibrant objects
of Lcc are lcc sketches with the right lifting property against trivial cofibrations,
the objects of sLcc are lcc sketches equipped with a canonical choice of lift b in
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diagrams such as (1.2). Every strict lcc categories are equipped with canonical
choices of limit cone over every finite diagram and canonical right adjoints
to pullback functors. The morphisms of strict lcc categories are the strict lcc
functors, i.e. functors which preserve this canonical structure up to equality.
The technical device in the definition of sLcc = Alg(Lcc) is the formalism of
algebraically fibrant objects, which applies to a wide range of model categories.
Perhaps surprisingly since not every lcc functor between strict lcc categories
is isomorphic to a strict lcc functor, the model categories Lcc and sLcc are
Quillen equivalent and hence present the same higher category.

As a potential model for dependent type theory, sLcc is more suitable than
Lcc: Instead of having to choose, we can interpret type constructors as the
canonical universal objects in strict lcc categories. Since the canonical universal
objects are preserved up to equality by the morphisms of sLcc, the strict lcc
functors, the resulting type constructors are stable under substitution.

However, context extensions Γ.σ in sLcc are given by a 1-categorical pushout,
which we cannot generally relate to slice categories Γ/σ. This prevents the
interpretation of dependent sum and dependent product types. For cofibrant
strict lcc categories Γ there exists an equivalence Γ.σ ' Γ/σ, which motivates
the next model category:

3. The category Coa sLcc of algebraically cofibrant strict lcc categories.
Where algebraically fibrant objects are objects of an underlying model category
with additional data witnessing their fibrancy, algebraically cofibrant objects
are equipped with data witnessing their cofibrancy. Intuitively, the objects
of Coa sLcc can be understood as strict lcc categories Γ equipped with a
strictification operator F 7→ F s which assigns to each non-strict lcc functor
F : Γ→ ∆ (i.e. a functor F which preserves lcc structure up to isomorphism,
but the canonical structure not up to equality) a naturally isomorphic strict
lcc functor F s : Γ→ ∆. The morphisms of Coa sLcc are functors of underlying
strict lcc categories which are compatible with the strictification operators
in domain and codomain. As before, the model category Coa sLcc is Quillen
equivalent to sLcc even though the underlying 1-categories are not equivalent.

The availability of the strictification operator, it turns out, is sufficient to
construct an equivalences between context extensions Γ.σ and slice categories
Γ/σ. Using this equivalence, we interpret dependent sum and dependent product
types in addition to finite limit types, which are interpreted as before in sLcc.

Intensional type theory & ∞-categories

The equality reflection principle of extensional type theory implies that every
two terms p1, p2 : Eq s1 s2 are equal, so that there exists a term of the equality
type Eq p1 p2. Famously, Hofmann and Streicher [41] showed that the identity
Id p1 p2 in intensional type theory need not be inhabited. This follows from
the existence of the groupoid model: Types in this model are interpreted as
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groupoids and terms as objects of groupoids. Crucially, identity types Id s1 s2 of
terms s1, s2 : σ are interpreted as discrete groupoids of isomorphisms between
s1 and s2 in the groupoid σ. Thus a pair of isomorphisms p1, p2 : s1

∼= s2 in
σ such that p1 6= p2 corresponds to terms p1, p2 : Eq s1 s2 such that Id p1 p2 is
not inhabited.

Underlying extensional type theory is the idea that types are discrete
collections of terms. As the example of groupoids shows, intensional type
theory is compatible with interpreting types as higher structures: Not only can
we ask whether terms are equal, but also the question how terms are equal is
non-trivial. In the groupoid model, this higher structure is truncated after the
first level: If p1, p2 : Id s1 s2 are two terms of an identity type, then every two
terms of the iterated identity type Id p1 p2 are equal.

Voevodsky brought the interpretation of types as higher structures to its
logical conclusion by proposing to interpret types as spaces. Thus terms are
interpreted as points, and identity types as path spaces. Terms p1, p2 : Id s1 s2

of an identity type are then interpreted as paths in the underlying space σ
from s1 to s2. Terms q1, q2 : Id p1 p2 of the iterated identity type are surfaces
in σ, terms of Id q1 q2 are cubes in σ and so forth.

Voevodsky’s interpretation can be made precise via the model of intensional
type theory in the category sSet of simplicial sets [55]. Simplicial sets are a
combinatorial notion of space which is often used in homotopy theory. As a
model of the homotopy theory of spaces, sSet carries the structure of a model
category. The interpretation of type theory in sSet is based on Awodey and
Warren [7], who pointed out that the groupoid model of dependent type theory
generalizes to a model in suitable model categories. One interprets the category
of contexts as usual as underlying category of the model category, but only
considers maps σ : domσ → Γ to an object Γ as types Γ ` σ if σ is a fibration.
In the simplicial model, this means that σ is a Kan fibration. Voevodsky’s
main insight was that the model in sSet has a univalent universe type U : For
types σ1, σ2 : U , the type of equivalences between σ1 and σ2 is equivalent to
the identity type Idσ1 σ2. Homotopy type theory is the extension of intensional
type theory by univalent universes and higher inductive types [83].

Higher category theory has garnered significant interest in recent years,
fueled especially by the theory of∞-categories. Whereas an ordinary category is
given by only objects (the 0-cells) and morphisms (the 1-cells), higher categories
have a notion of n-cell for all n ≥ 0. An ∞-category (or, more precisely, an
(∞, 1)-category), is a higher category in which all n-cells for n ≥ 2 are invertible.
In contrast to general higher categories, ∞-categories are well-understood and
behave in many respects similarly to 1-categories. While different formalizations
of the concept exist, for us an ∞-category is a quasi-category, i.e. a simplicial
set satisfying the inner Kan condition.

Intuitively we can think of ∞-categories as categories weakly enriched over
spaces: For every two objects x, y, there is a mapping space of morphisms from
x to y. All equalities one expects in ordinary category theory are replaced with
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coherent homotopy, e.g. the identity and associativity laws, and preservation
of identity and composite morphisms by functors. The Yoneda embedding of
∞-categories is valued in the ∞-category of spaces, which plays the role that
the category of sets has in ordinary category theory.

The simplicial model of intensional type theory is thus the higher analogue
of the set model of extensional type theory. Similar to how the model of
extensional type theory in sets generalizes to Seely’s models in lcc categories,
it is conjectured that intensional type theory can be interpreted in every lcc
∞-category. The converse, that every model of intensional type theory induces
an lcc ∞-category, was proved by Kapulkin [54]. Extending these conjectured
interpretations, it is expected that homotopy type theory has models in every
elementary ∞-topos cite. Parts of these conjectures have already been proved:

• Shulman [77] proves that every Grothendieck ∞-topos induces a model
of HoTT. Every Grothendieck ∞-topos is an elementary ∞-topos, but
the converse is false. Example: Filter quotient construction due to Nima.
Crucial to Shulman’s proof is the fact that every Grothendieck ∞-topos
is locally presentable, hence can be presented by a model category. By
choosing the model category carefully, HoTT can be interpreted in the
underlying 1-category of the model category.

• Kapulkin [54] shows that every model of intensional type theory induces
a locally cartesian closed ∞-category, and Kapulkin and Szumiło [56]
describe the internal language of finitely complete ∞-categories as inten-
sional type theory without Π-types. The main difficulty in proving these
results is that the categories are not complete and cocomplete, so model
category theory is not directly applicable.

If the full conjecture was proved, it would allow us to translate problems
between ∞-category theory and intensional type theory. Note that currently
almost all known examples of lcc ∞-categories are in fact Grothendieck ∞-
toposes, for which an interpretation is already known to exist. Arguably the
lack of interest in elementary ∞-toposes is because an interpretation of type
theory is not known to exist yet. For example, there has been some interest in a
higher version of realizability toposes [82], which would not be a Grothendieck
∞-topos, but higher realizability toposes have so far not been studied from a
purely category-theoretic perspective.

Conversely, an interpretation of HoTT in elementary∞-toposes would allow
us to conclude statements about elementary ∞-toposes from statements in
HoTT. For example, the computations of fundamental groups of n-spheres in
HoTT would apply to objects of n-spheres in every elementary ∞-topos. Riehl:
HoTT is infty category theory for undergraduates.

As in the 1-categorical case, the naive approach to an interpretation of
intensional type theory in lcc ∞-categories fails due to coherence problems.
Where type theory expects equalities, we can only provide equivalences. But
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in addition to the problems we had with extensional type theory, the following
new problems arise:

1. Associativity and identity laws in∞-categories hold only up to homotopy.
Thus there is no obvious 1-category of contexts.

2. Much like type formers, term formers are substitution stable only up to
homotopy. In the 1-categorical case, term constructors are interpreted
as morphisms induced by universal properties. These morphisms exist
uniquely such that certain diagrams commute and are thus trivially
stable under substitution. In the ∞-categorical case, such morphisms
are only unique up to contractible homotopy. From this it follows that
these morphisms are stable under substitution up to homotopy but not
necessarily up to equality.

3. The analogue of the definitional laws that terms must satisfy, e.g. the β
and η-equalities for dependent products, hold in lcc ∞-category only up
to homotopy.

In Chapter 4, we discuss the∞-categorical multiverse model. Similarly to the 1-
categorical case, we wish to interpret each context as a separate lcc∞-category,
substitutions as lcc functors, types as objects and terms as morphisms with
terminal domain. In the 1-categorical case the multiverse model allowed for a
novel coherence construction, of which we explore an ∞-categorical adaptation.
We thus construct a succession of three model categories: First the category
of sketches for lcc ∞-categories, then the category of algebraically fibrant
objects therein, and finally algebraically cofibrant objects. Note that the
multiverse model immediately solves problem 1 above, since ∞-categories in
the sense of simplicial sets satisfying the inner Kan condition are naturally
organized as a model category, which has an underlying 1-category. The
algebraically fibrant objects then solves the problem of substitution stable
type and term formers, which are given by lifts against trivial cofibrations
and are hence strictly preserved by morphisms. There is no reason to expect
problem 3 to disappear, and indeed β and η rules hold only up to homotopy.
These homotopies themselves are substitution stable, and so we can interpret
new term formers witnessing these laws up to homotopy. We thus interpret
weak versions of finite limit types, in which computation rules hold only up
to specified homotopy. Similar relaxations of intensional type theory were
considered previously [13, 85].

The third model category of algebraically cofibrant objects, allows us in the
1-categorical case to interpret dependent product and dependent sum types via
an equivalence Γ.σ ' Γ/σ. Crucially, algebraically cofibrant strict lcc categories
are stable under context extensions in the 1-categorical case. Unfortunately,
this fact does not transfer to the ∞-categorical case: Here we can only show
that context extensions by variables of base types exist, and these variables
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can only be eliminated into base terms. Base types are types which can be
described by morphisms in the category of algebraically cofibrant objects, which
intuitively means that they do not arise via a type former; base terms are
defined similarly. Base types and terms are a purely semantical phenomenon
as they cannot be part of the syntax by definition.





Chapter 2

Probabilistic programming

Abstract

The ALEA Coq library formalizes measure theory based on a variant
of the Giry monad on the category of sets. This enables the interpretation
of a probabilistic programming language with primitives for sampling
from discrete distributions. However, continuous distributions have to be
discretized because the corresponding measures cannot be defined on all
subsets of their carriers.

This paper proposes the use of synthetic topology to model continuous
distributions for probabilistic computations in type theory. We study the
initial σ-frame and the corresponding induced topology on arbitrary sets.
Based on these intrinsic topologies we define valuations and lower integrals
on sets, and prove versions of the Riesz and Fubini theorems. We then
show how the Lebesgue valuation, and hence continuous distributions,
can be constructed.

2.1 Introduction

Monads on Cartesian closed categories are a semantics for a large class of
effectful functional programming languages [65]. The ALEA Coq library [6]
provides an interpretation of Rml, a functional programming language with
primitives for random choice, by constructing a version of the Giry monad [35]
on the category of Coq’s types. Giry monads generally assign to a suitable class
of spaces their spaces of measures or valuations, and in ALEA’s case it is the
class of discrete spaces. ALEA’s monad is suitable for embedding programming
languages with discrete sampling constructs into the ambient logic of Coq, as
for example in applications to cryptography [9]. But continuous distributions
are essential in statistics, machine learning and differential privacy, and these
distributions have to be discretized in ALEA because they cannot be defined
on discrete spaces. For example, the Lebesgue measure is only defined on Borel
sets, and hence is not directly definable in ALEA.

27
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We propose the use of synthetic topology [59] as a principled way of resolving
the problem of continuous distributions. In synthetic topology, one works in
constructive (in our case even predicative) mathematics to which one adds
axioms that make sets behave much like topological spaces. The precise
mathematical foundation we have in mind is Homotopy Type Theory (HoTT)
as it is used in modern proof assistants, on top of which we assume the necessary
axioms of synthetic topology.

HoTT has a number of advantages over standard intensional type theory,
even when one is only interested in sets, i.e. types with trivial higher structure.
ALEA can only prove its version of the Giry monad to adhere to the monad
laws pointwise and resorts to setoids because neither function extensionality
nor quotients are part of standard Coq. This is not a problem in HoTT, where
function extensionality is provable and quotients of sets can be constructed as
a special case of higher inductive types. We refer to Section 2.2 for a detailed
discussion of our mathematical foundations.

Our main contribution is a development of the theory of valuations (which
play the role of measures) and lower integrals on sets in synthetic topology. We
show that a version of the Riesz theorem holds in this setting: Valuations are
in one-to-one correspondence with lower integrals. This is then used to define a
Giry monad G on the category of sets in terms of the continuation monad, and
we prove a version of the Fubini theorem. Assuming the metrizability of the
real numbers R, which asserts that the intrinsic topology on the set R agrees
with the metric topology, we then define the Lebesgue valuation as an element
of G(R). Finally, we obtain an interpretation of Rml, a call-by-value PCF with
probabilistic effects, via the restriction of the Giry monad G to sub-probability
valuations.

In non-classical measure theory (which is required because the metrizability
of R is contradictory with classical logic), the Dedekind or Cauchy real numbers
have to be replaced by the lower reals Rl because the former are not closed
under enumerable suprema. A lower real is a lower closed rounded inhabited
subset of Q, and in synthetic topology it is natural to require that this subset
is furthermore an open subset. An analogous construction for Dedekind reals
in synthetic topology is studied by Lešnik [59] in great generality. The HoTT
book [83] also proposes this in the special case of S equal to the initial σ-frame,
and a formalization inspired by Coq’s Math Classes [78] using the HoTT library
[8] has been carried out by Gilbert [34]. We develop the theory of lower reals
valued in the initial σ-frame and construct an isomorphism Rl ∼= Qω with the
ω-cpo completion of the rationals Q.

The initial σ-frame is itself the ω-cpo completion of the partial order of
booleans ⊥ ≤ >, or, equivalently, the pointed ω-cpo completion of the unit set
1 = {∗}. Pointed ω-cpo completions of sets are studied by Altenkirch et al. [2]
in HoTT using quotient inductive inductive types [3]. We explain how their
construction can be adapted to ω-cpo completions of preorders with respect to
covers. This generality is needed to define ω-cpo completions of the rationals
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and the definition of a formal σ-frame of opens in the Dedekind reals R.
In concurrent work with our initial work on this topic [31], Huang [44]

developed the semantics of a probabilistic programming language targeted at
machine learning with semantics in topological domains. Meanwhile, Huang
et al. [45] have connected the two approaches by showing that the interpretation
of a valuation in the internal logic of the K2-realizability topos indeed gives
the notion of valuation on topological domains as defined by Huang [44].

Some of the results presented in this paper are formalized1 in Coq on top
of the HoTT library. The core of the formalization consists of a proof of
the dominance property of the Sierpinski space (Theorem 2.7), most of our
discussion of the lower reals (Section 2.5), and the definition of the Giry monad
(Definition and Proposition 2.25).

The paper is structured as follows. Section 2.2 contains some of the
order-theoretic preliminaries and notation used throughout the paper. Section
2.3 discusses the construction and properties of ω-cpo completions. Section
2.4 studies the initial σ-frame as a set of truth values in synthetic topology.
Section 2.5 constructs the lower reals and contains a proof of their universal
property (Theorem 2.11). Section 2.6 defines valuations and integrals and proves
their equivalence (Theorem 2.17, a variant of the Riesz theorem). Section 2.7
constructs the Giry monad and proves a variant of the Fubini theorem (Theorem
2.27). Section 2.8 discusses the metrizability of R and constructs the Lebesgue
valuation. Section 2.9 provides an interpretation of Rml based on the Giry
monad that can account for continuous distributions. Section 2.10 concludes.

2.2 Preliminaries

Logical foundations Our logical foundation is predicative and constructive
mathematics. Constructivity means that we do not assume classical principles
such as the lemma of the excluded middle, and that we do not assume the
existence of choice functions. Predicativity means that we do not use the
powerset construction, i.e. we do not assume that there are sets P(A) = {B |
B ⊆ A}.

The concrete system that we have in mind is Homotopy Type Theory
(HoTT), and specifically its theory of (homotopy) sets, i.e. types with trivial
higher structure. Rijke and Spitters [73] prove that the category of sets in
HoTT form a ΠW -pretopos, which is the category theoretic description of our
logical foundation.

HoTT’s inductive types allow the construction of effective quotients. Effec-
tivity means that the principle of unique choice holds: If for a binary relation
R ⊆ X × Y we have that for all x ∈ X there exists a unique y ∈ Y such that
R(x, y), then there exists a function fR : X → Y such that R(x, fR(x)) for

1https://github.com/FFaissole/Valuations/tree/d06d2c8c9cce3ddf6137

https://github.com/FFaissole/Valuations/tree/d06d2c8c9cce3ddf6137
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all x. Furthermore, functions in HoTT satisfy function extensionality: If two
functions agree pointwise, then the two functions are equal.

These two principles are fairly unusual for systems based on type theory,
and they are not provable in Agda or Coq. While some of HoTT’s higher
structure, in particular the univalence axiom, can make it more convenient to
work even with hsets, higher types are not strictly required for our work. We
are thus optimistic that our work could in principle be formalized in systems
such as XTT [80] or OTT [1] that promise to extract HoTT’s well-behaved
logic of hsets while discarding higher principles such as the univalence axiom
for hsets. However, not all quotients in XTT and OTT are well-behaved in the
sense that they satisfy the principle of unique choice, hence our reliance on it
might obstruct such a formalization project.

Predicative foundations reject the notion of a subobject classifier (i.e. a
set Ω of truth values such that every subset of a set X corresponds to a map
X → Ω), but they permit universes of small, bounded sets. We thus assume a
countable hierarchy of universes U0 ⊆ U1 ⊆ . . . of small sets. Universes allow
the definition of sets of small proposition Ω0 ⊆ Ω1 ⊆ . . . by restriction to sets
with at most one element. We thus obtain small powersets Pi(X) as sets of
functions X → Ωi. The bookkeeping of the current universe/subset level i is
essentially trivial; we will thus simply write Ω to mean the set Ωi for a fixed
level i where confusion is unlikely.

While all existing systems that implement our intended logical foundations
are based on type theory, we stick to the usual set theoretic notation in this
paper. We emphasize that the difference between our set theoretic notation and
type theory is only superficial: For example, when we write X ⊆ Y , we mean
that there is an evident injective coercion from X to Y . A set comprehension
{x ∈ X | φ(x)} corresponds to the dependent sum type Σx∈Xφ(x) and is used
only when φ(x) is a proposition for all x. We adopt the convention that the
phrase “there exists” refers to a proof-relevant, i.e. untruncated statement;
when we mean the proof irrelevant notion we say that something “merely”
exists. Similarly, we write X → Y for the set of functions from X to Y here;
elsewhere, this set is often denoted by Y X .

In addition to the logical foundations based on HoTT’s hsets, we require
two additional principles to work with synthetic topology. First, we assume the
existence of free ω-cpo completions (Assumption 1). As explained in Section
2.3, this is a fairly weak assumption; it follows from a number of other common
axioms (impredicativity, HoTT’s quotient-inductive-inductive types or the
axiom of countable choice).

Second and more invasive, we assume that the set of real numbers is
metrizable (Assumption 2). The metrizability axiom asserts that the intrinsic
topology (see Section 2.4) on R agrees with the usual metric topology. It
contradicts classical logic, and is not satisfied in most models of our logic, i.e.
ΠW -pretoposes. However, it does hold in the big topos of topological spaces
and in the K2 realizability topos (see Section 2.8).
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Semantics As we work internally in a rather unusual logic, we have to
justify its consistency, in particular the consistency of the two axioms that we
assume on top of predicative mathematics. First of all, a model of predicative
mathematics is a ΠW -pretopos [73]. Every topos is, in particular, a ΠW -
pretopos, and so our results apply to the internal logic of every topos that
validates our axioms. [59] proves that both the K2 realizability topos and the
topological toposes [32, 86] validate our two assumptions and can thus interpret
all of our constructions.

The topos used in Fourman [32, 33] and the topos of continuous M -actions
for the localic monoid of endomorphisms of Baire space used in Van Der Hoeven
and Moerdijk [86] are equivalent by the Comparison Lemma [50, Theorem
C.2.2.3] because the topological monoid M is dense in the site of separable
locales, all of which can be covered by Baire space. Thus sheaves in the
latter topos can be seen as a uni-typed version of sheaves in the former topos.
Both of these works provide a constructive elaboration of Brouwer’s continuity
principles.

Our specific realization of predicative mathematics is the theory of 0-
truncated types, sets, in HoTT. This, however, poses new semantical problems:
ΠW -pretoposes and in particular 1-toposes do not model HoTT’s higher di-
mensional priniciples such as the univalence axiom.

While we expect that both the K2 realizability topos and the topological
toposes can be suitably embedded into models of HoTT, only the case of
topological toposes appears to be resolved (though see e.g. Swan and Uemura
[82] for progress on realizability models): It was proved by Shulman [77]
that most of HoTT as presented in the HoTT book can be interpreted in
all Grothendieck ∞-toposes. Shulman’s ∞-topos models can also interpret
propositional resizing (impredicativity), and so Assumption 1 holds in these
models. Every Grothendieck 1-topos of sheaves over a finitely complete site is
equivalent to the category of 0-truncated objects in the corresponding ∞-topos
[5]. In particular, this holds for sheaves over the site of small topological spaces,
thus the model of HoTT in this ∞-topos also validates Assumption 2.

Order theory Let us review some basic notions from order and domain
theory. A preorder consists of a carrier set P and a transitive and reflexive
relation x ≤ y on P . We generally identify a preorder with its carrier set P ,
leaving the order relation implicit. A map f : P → Q of preorders is monotone
if x ≤ y implies f(x) ≤ f(y) for all x, y ∈ P . A partial order is a preorder
whose ordering relation is antisymmetric. A suborder of a partial order P is a
monotone map i : P ′ ↪→ P with P ′ a partial order such that i(x) ≤ i(y) implies
x ≤ y. Suborders of P may be identified with subsets of P .

Let I and P be preorders and let d : I → P be a monotone map. The
join

∨
d =

∨
i∈I d(i) of d is a least element such that d(i) ≤

∨
d for all i ∈ I.

Dually, a meet
∧
d =

∧
i∈I d(i) is a greatest element such that d(i) ≥

∧
d for
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all i ∈ I. Joins and meets are uniquely determined up to isomorphism, i.e. if e
and e′ are both joins (or both meets) of the same diagram D, then e ≤ e′ and
e′ ≤ e. If we say that certain kinds of joins or meets exist in a preorder, we
mean that there is a function that assigns to every suitable diagram its join or
meet, respectively, and these canonical joins and meets are denoted by

∨
−

and
∧
−. If P is a partial order, then joins and meets are unique if they merely

exist, and so by unique choice we obtain unique join and meet functions.
Identifying subsets U ⊆ P with suborders of P , we write

∨
U ∈ P for the

join over the corresponding inclusion map. A monotone map f : I ′ → I of
preorders I ′ and I is final if for each i ∈ I there merely exists i′ ∈ I ′ such that
i ≤ f(i′). If d : I → P is a monotone map into a partial order P and f : I ′ → I
is final, then the two joins

∨
d and

∨
(d ◦ f) exist and agree if either one exists.

A preorder I is directed if I is inhabited and there is a function u : I×I → I
(not necessarily monotone) such that for all i, j ∈ I we have i ≤ u(i, j) and
j ≤ u(i, j). The partial order ω has for its carrier set the natural numbers with
its natural order (which is generated by n ≤ n+ 1 for all n). If I is enumerable
(i.e. there exists a surjection N� I) and directed, then there exists a final map
ω → I. Thus enumerable directed joins in partial orders P can be reduced to
joins over maps ω → P , i.e. chains x0 ≤ x1 ≤ . . . in P .

Bottom and top elements are joins ⊥ =
∨
∅ and meets > =

∧
∅, respectively,

over the empty set. A lattice is a partial order L which has all binary joins
x∨y =

∨
{x, y} and binary meets x∧y =

∧
{x, y} for x, y ∈ L. It is distributive

if x∧(y∨z) = (x∧y)∨(y∧z) holds for all x, y, z ∈ L. An ω-complete partial order
(ω-cpo) is a partial order which has all enumerable directed joins. A monotone
map f : C → D of ω-cpos C and D is ω-(Scott-)continuous if f preserves
enumerable directed joins. A σ-frame is a partial order with bottom and top
elements, binary meets and enumerable joins which satisfy the distributivity
law x∧

∨
n∈N yn =

∨
n∈N (x∧ yn). A partial order P is a σ-frame if and only if

it has top and bottom elements and is both a distributive lattice and an ω-cpo:
Arbitrary enumerable joins can be computed as

∨
n∈N xn =

∨
n∈ω (x0∨· · ·∨xn)

using just the lattice and ω-cpo structure.
Sets of truth values Ω = Ωi are partially ordered by implication. They are

stable under joins (disjunctions) and meets (conjunctions) over small indexing
sets.

2.3 Presentations of ω-cpos

In this section we adapt the notion of dcpo presentation described in Jung et al.
[53] for ω-cpo presentations. We discuss three proofs of the existence of free
ω-cpo completions, and construct presentations of product ω-cpos.

Definition 2.1. An ω-cpo presentation consists of a preorder P and a cover
relation / ⊆ P × P(P ) such that p / U (p is covered by U) holds only if U is
an enumerable directed suborder of P (thus U is given by a map N→ P with
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directed image). We generally leave the covering relation / implicit and refer
to the ω-cpo presentation (P, /) as just P . A morphism of ω-cpo presentations
f : P → Q is a monotone map preserving covers, in the sense that if p / U
holds in P , then f(p) / f(U) holds in Q for all p ∈ P and U ⊆ P .

Every ω-cpo C can be regarded as an ω-cpo presentation with cover relation

c / U ⇐⇒ c ≤
∨
U

for U ⊆ C directed and enumerable. ω-continuous maps C → D of ω-cpos may
be identified with their morphisms when considered as ω-cpo presentations.

Assumption 1. Let P be an ω-cpo presentation. Then there is a free ω-cpo
over P , i.e. there is a morphism η : P → Pω of ω-cpo presentations with Pω an
ω-cpo such that for any given morphism f : P → C with C an ω-cpo there is a
unique ω-continuous map f̄ : Pω → C such that f̄η = f : P → C.

It appears that Assumption 1 is independent of constructive predicative
mathematics. However, it follows from rather weak additional mathematical
principles, all of which are generally considered constructive.

As a first option, one can work with propositional resizing (impredicativity)
[83], i.e. assume that the inclusions Ω0 ⊆ Ω1 ⊆ . . . are equalities. Working
impredicatively, Jung et al. [53] construct free dcpos over dcpo presentations.
We sketch a straightforward adaptation of their proof for ω-cpos. Say a lower
subset a ⊆ P is an ideal if from p/U and U ⊆ a it follows that p ∈ a. Let Idl(P )
be the partial order of all ideals. Ideals are closed under arbitrary intersections,
so every subset M ⊆ P is contained in the least ideal containing it:

〈M〉 =
⋂
{a ∈ Idl(P ) |M ⊆ a}.

It follows that Idl(P ) has all joins and that they can be computed as
∨
i∈I ai =

〈
⋃
i∈I ai〉. Assigning to each p ∈ P the principal ideal 〈{q ∈ P | q ≤ p}〉 gives

a monotone map from P to Idl(P ) which preserves covers. It exhibits Idl(P )
as the free suplattice over P , i.e. the free partial order with all joins subject to
the cover relations. Now Pω can be defined as the least subset of Idl(P ) which
contains the principal ideals that is closed under joins of enumerable directed
families.

Next, Pω can be constructed as a quotient inductive inductive type (QIIT)
[3] in homotopy type theory. The special case of the free ω-cpo with bottom
element over a set (i.e. discrete partial order without covers) is worked out in
Altenkirch et al. [2]. Given a set A, they define A⊥ and a dependent predicate
≤: A⊥ × A⊥ → Ω mutually recursive as a QIIT. Elements of A⊥ and their
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equalities are generated by the constructors

η : A→ A⊥
∨

:

 ∑
x:N→A⊥

∏
n:N

xn ≤ xn+1

→ A⊥

⊥ : A⊥ α :
∏

x,y:A⊥

x ≤ y → y ≤ x→ x = y.

≤ has constructors corresponding to reflexivity, transitivity and the universal
properties of ⊥ and

∨
. The recursion principle for A⊥ as QIIT is the universal

property of the free domain over A. This argument can easily be adapted for
our purpose: To construct Pω given an ω-cpo presentation P , one omits from
the scheme defining P⊥ the constructor ⊥ and adds constructors

∏
p,q:P p ≤

q → η(p) ≤ η(q) corresponding to monotonicity of η and∏
p:P

∏
U∈P(P )

p / U → η(p) ≤
∨
cU

where cU : N→ P is a monotone and final map into U . The semantics of QIITs
are not entirely understood, but it is proved in Lumsdaine and Shulman [60]
that all Grothendieck ∞-topos models validate the existence of many HITs.
Work on reducing QIITs to such simpler inductive constructions is ongoing; see
[3].

As a third alternative, Pω can be constructed as a quotient of the set
Hom(ω, P ) of monotone sequences in P if one is willing to assume the axiom
of countable choice, at least in the important special case where the covering
relation is such that p / U holds only if u ≤ p for all u ∈ U , which is true in all
our applications. A similar construction for A⊥ is worked out in Altenkirch
et al. [2], with the general idea going back to Rosolini [74]. Let ≤′ be the
preorder on the set of monotone functions Hom(ω, P ) which is generated from
c ≤′ d if for all n there merely exists m such that cn ≤ dm, and η(p) ≤′ cU
whenever p / U , where η(p) denotes the constant sequence with value p and cU
is a final sequence in U . If c, d : ω → P are monotone and c ≤′ d, then it can
be shown by induction over transitivity of ≤′ that for all m,n there merely
exist either m′ or n′ such that c(m′) respectively d(n′) is an upper bound for
both c(m) and d(n). It follows that the image of the set-theoretic transpose
c̄ : N × N → P of a monotone function c : ω → Hom(ω, P ) (c̄ need not be
monotone with respect to the product order) is directed: The mere existence
of binary upper bounds implies the existence of a function assigning upper
bounds because of the bijection N× N ∼= N and countable choice. We obtain
a final sequence c′ : ω → P , which can be shown to be a join of c. Let Pω
be the quotient partial order of the preorder (Hom(ω, P ),≤′). By countable
choice, every sequence c : ω → Pω can be lifted to one in Hom(ω, P ), where its
join can be computed and mapped back to Pω. Thus Pω is an ω-cpo, and the
verification of its universal property is straightforward.
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Proposition 2.2. The free ω-cpo completion is monotone on functions: If
f ≤ g : P → Q, then fω ≤ gω : Pω → Qω.

Proof. The subset {x ∈ Pω | fω(x) ≤ gω(x)} contains η(p) for all p ∈ P and is
closed under directed enumerable joins.

Jung et al. [53, proposition 2.8] construct presentations of product dcpos
based on presentations of their factors, and an analogous result holds for ω-
cpos. Our proof differs slightly from theirs because we do not assume that
ω-completions are constructed as sets of ideals and instead rely solely on the
universal property.

Proposition 2.3. Let P and Q be ω-cpo presentations. Define a cover relation
on the product partial order P × Q by (p, q) / U × {q} if p / U in P and
(p, q) / {p}×V if q /V in Q. Then the canonical map f : (P ×Q)ω → Pω×Qω
is an order isomorphism.

Proof. Let g0 : P → (Q→ (P×Q)ω) be the function assigning to each p ∈ P the
function q 7→ η(p, q). The set of functions Q→ (P ×Q)ω is an ω-cpo with joins
computed pointwise. If p/U and q ∈ Q, then

∨
u∈U g0(u)(q) =

∨
η(U)×{q} ≥

η(p, q) = g0(p, q) by definition of the cover relation on P ×Q. Thus g0 preserves
covers and induces an ω-continuous map g1 : Pω → (Q → (P × Q)ω). Let
g2 : Q → (Pω → (P × Q)ω) be its transpose; it is valued in ω-continuous
functions. Suppose q / V and let us prove that for each x ∈ Pω we have

g2(q)(x) ≤
∨
v∈V

g2(v)(x). (2.1)

If x = η(p) for some p ∈ P , then this holds because (p, q)/{p}×V in P ×Q. If
(2.1) holds for every element x ∈W for a directed enumerable family W ⊆ Pω,
then

g2(q)(
∨
W ) =

∨
x∈W

g2(q)(x) ≤
∨
x∈W

∨
v∈V

g2(v)(x) =
∨
v∈V

g2(v)(
∨
W )

because g2(q) and g2(v) for all v commute with joins and joins commute
among each other. Thus g2 preserves covers and induces an ω-continuous map
g3 : Qω → (Pω → (P ×Q)ω). Let g : Pω ×Qω → (P ×Q)ω be its transpose.

g is ω-continuous in each argument. Thus if p : I → Pω and q : I → Qω
are monotone maps with I enumerable and directed, then

g(
∨
i∈I

(pi, qi)) =
∨
i∈I

∨
j∈I

g(pi, qj) =
∨
k∈I

g(pk, qk)

because, I being directed, the diagonal I → I × I is final. It follows that g is
ω-continuous. Thus gf is the identity by the universal property of the ω-cpo
completion, and fg = id holds by the universal property of products.
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Corollary 2.4. Let P be an ω-cpo presentation. If P has a bottom element ⊥,
then η(⊥) ∈ Pω is a bottom element, and likewise for top elements. If P has all
binary joins which are compatible with covers in the sense that ∨ : P × P → P
preserves the covers on P ×P defined in Proposition 2.3, then Pω has all binary
joins and η : P → Pω preserves them. The same is true for binary meets.

Proof. Without loss of generality, we may assume that for all p ∈ P we have
p / {p} because adding these covers to P does not change the generated ω-cpo
Pω. Endow the terminal partial order 1 with the covering relation ∗ / {∗},
where ∗ ∈ 1 is the unique element of the unit set. Then the map P → 1 is a
map of ω-cpo presentations, and so are its right or left adjoints 1→ P if they
exist. Because 1ω = 1 and the ω-cpo completion is monotone (Proposition 2.2),
it follows that Pω → 1 is a right (left) adjoint if P → 1 is. Thus Pω has a
bottom (top) element if P has one.

Suppose p / U in P . Then

(η(p), η(p)) ≤
∨
u∈U

∨
v∈U

(η(u), η(v)) =
∨
w∈U

(η(w), η(w))

because U is directed. We may thus add the diagonal covers

(p, p) / {(u, u) | u ∈ U} (2.2)

to the covers of P × P without changing the generated ω-cpo. Because P × P
presents the product Pω × Pω, the diagonal Pω → Pω × Pω is obtained by
ω-cpo completion of the diagonal of P . Now suppose P has binary joins which
preserve the covers defined in Proposition 2.3. Binary joins will always preserve
diagonal covers as in (2.2). Thus the binary join map can be extended to a left
adjoint to the diagonal of Pω, i.e. Pω has binary joins. Similarly, if P has a
cover preserving binary meet map, then its extension to Pω will be right adjoint
to the diagonal.

2.4 Synthetic topology and the initial σ-frame

In synthetic topology [28, 46, 59] one works with sets and functions as if they
behave like topological spaces and continuous maps. For this analogy to have
any value, the very least one would expect is a notion of open subset of a given
set (i.e. space). The set of (small) subsets of a given set A is given by the set
of functions A→ Ω. It is thus natural to expect a subset S ⊆ Ω that classifies
the open subsets, in the sense that a function A→ Ω is the indicator function
of an open subset if and only if it factors via S. S may be thought of as the
set of open truth values. We obtain sets O(A) = (A→ S) of open subsets for
every set (space) A, and it can indeed be verified that the preimage of an open
subset under every function is again open. Thus all functions are continuous.

In traditional (analytic) topology, S corresponds to the Sierpinski space:
The space with carrier Ω whose only nontrivial open is the singleton set {>}.



2.4. SYNTHETIC TOPOLOGY AND THE INITIAL σ-FRAME 37

Indicator functions χ : A→ Ω with A a topological space (in the usual sense)
are continuous if and only if the preimage of > is open; in other words if and
only if χ corresponds to an open subset.

Without imposing any further requirements on S, there is not much we can
say about the sets O(A). For example, S = ∅might be empty, in which case only
the empty subset has any open subsets at all. If S = {>}, then O(A) = {A} for
all A. For S = B = {⊥,>} the booleans, the opens are precisely the decidable
subsets. In this case, S is closed under finite conjunctions and disjunction,
corresponding to open subsets being closed under finite intersections and unions.
But in constructive models, the booleans are usually not closed under infinite
conjunction, so we may not assume that any infinite unions of opens are open.
Arguably the most interesting case is where S is a proper subset of Ω (so that
the topology is not discrete), contains the boolean truth values > and ⊥ and is
closed under enumerable disjunction. This makes it possible to study limits
and first-countable spaces such as the real numbers, which are at the heart of
integration theory. Following the HoTT book and Gilbert [34], we take for S
the least subset of Ω satisfying these constraints: The initial σ-frame.

Definition and Proposition 2.5 ([34]). The Sierpinski space S = Bω is the
free ω-cpo over the partial order B = {⊥ ≤ >} of decidable truth values. S
admits the structure of a σ-frame, and it is the initial one. The map S → Ω
given by s 7→ s = > exhibits S as a suborder of Ω and preserves all σ-frame
structure.

Thus S is a suborder of Ω, and we freely identify elements s ∈ S with their
image in Ω. The preservation of enumerable joins by the inclusion S ⊆ Ω means
that if

∨
n∈N sn = > holds for an enumerable family of elements sn ∈ S, then

there merely exists n such that sn = >.
As explained in Section 2.3, in the presence of countable choice S may

be identified with monotone binary sequences ω → B, where we distinguish
sequences only by whether they eventually reach >. This set is also known as
the Rosolini dominance [74] and denoted by Σ0

1. When S = Σ0
1, open subsets

U : A→ S can be understood as the semi-decidable subsets. Let a ∈ A and let
s0 ≤ s1 ≤ . . . be an increasing binary sequence representing U(a). If sn = > for
some n, then a ∈ U , but we can never conclude a /∈ U by checking only a finite
prefix of s. Under a realizability interpretation, s corresponds to a computation
producing an infinite stream of digits which will eventually contain 1 if and
only if a ∈ U . If furthermore A itself is enumerable, we obtain an enumeration
of U . The Rosolini dominance is not well-behaved without countable choice.
For example, it is not closed under enumerable disjunction. We circumvent this
issue by using the initial σ-frame instead, which is closed under enumerable
disjunction by definition.

An important requirement imposed on the set of open truth values is the
dominance axiom. Consider inclusions of spaces A ⊆ B ⊆ C such that A is
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open in B and B is open in C. In analytic topology, this implies that A is
open in C. This is not automatic in synthetic topology, but holds if S ⊆ Ω is a
dominance [74]:

Definition 2.6 (Dominance.v:23). A subset S ⊆ Ω is a dominance if for all
p ∈ Ω and s ∈ S it holds that

(s =⇒ (p ∈ S)) =⇒ (s ∧ p) ∈ S. (2.3)

Note that p ∈ S and (s∧p) ∈ S are themselves propositions, hence elements
of Ω. Elements s ∈ S are, via the inclusion S ⊆ Ω, in particular propositions.

Rosolini [74] proved that Σ0
1 is a dominance under the assumption of

countable choice. It follows that S is a dominance if countable choice holds.
But S being a dominance can be proved directly, and even without assuming
countable choice:

Theorem 2.7 (Dominance.v:32). The Sierpinski space S ⊆ Ω is a dominance.

Proof. We prove the dominance property (2.3) for fixed p ∈ Ω using the
induction principle of S as a free ω-cpo completion of B. If s = > and
s =⇒ (p ∈ S), then in particular p ∈ S and thus (s ∧ p) = p is in S. If s = ⊥,
then (s∧ p) = ⊥, which is an element of S. Now let s =

∨
n sn for an ascending

chain s0 ≤ s1 ≤ . . . in S. Suppose that s =⇒ (p ∈ S) and that the dominance
property (2.3) with sn in place of s holds for all n ∈ N. Combining this with
sn =⇒ s and s =⇒ p it follows that sn ∧ p is in S for all n. Thus

s ∧ p = (
∨
n

sn) ∧ p =
∨
n

(sn ∧ p)

by the distributive law, which is in S.

Given a dominance S and a set A, Rosolini constructs a partial map classifier
of A, which is an object representing partial maps B ⇀ A whose domains of
definition are open with respect to S. Following Escardó and Knapp [30], the
partial map classifier can be defined as

LSA = {(s, v) | s ∈ S, v : s→ A}.

Here s is identified with the subsingleton set {∗ | s}. They refer to elements
(s, v) ∈ LSA as partial elements. v is the value, s its extent. Under a realizability
interpretation and S = S = Σ0

1, maps B → LSA can be thought of as partial
functions from B to A, in the sense that their interpretations yield potentially
non-terminating computations producing results in A. The interpretation of
constructive logic in the effective topos even validates the axiom that for every
function N → LSN there merely exists a Turing machine which computes it
[16, chapter 3].

https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Dominance.v#L23
https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Dominance.v#L32
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If one uses the booleans {⊥,>} as set of open truth values S, then LSA
is the set of decidably partial elements. LSA can then be described as the
free partial order with bottom element over the discrete partial order A. Its
underlying set is the sum A + 1, and all elements of A are greater than the
element of 1. In this case it is thus decidable whether x ∈ LSA represents a
fully defined element (i.e. x ∈ A) or whether x is undefined (i.e. x ∈ 1), so that
we may think of elements of A+ 1 as decidably partial elements of A.

Altenkirch et al. [2] propose defining the partial map classifier of A as
the QIIT A⊥ described in Section 2.3. In our terminology, A⊥ is the ω-
cpo completion (A + 1)ω. Escardó and Knapp [30] mention that A⊥ can
be understood in terms of Rosolini’s lifting construction. Indeed, LSA has
the structure of an ω-cpo with bottom element under A: The structure map
e : A → LSA is defined by assigning to each element a ∈ A the unique map
> → A with value a. For v : s→ A and v′ : s′ → A in LSA let

(s, v) ≤ (s′, v′) ⇐⇒ ((s =⇒ s′) ∧ v′|s = v : s→ A.

This defines a partial order on LSA. Its bottom element is the unique map
⊥ → A. The join of an enumerable directed set U = {(su, vu) | u ∈ U} ⊆ LSA
is given by (

∨
u∈U su, v), where v is defined by v(x) = vu0(x) whenever x ∈∨

u∈U su is in su0 . Thus there is a unique ω-continuous map f : A⊥ → LSA
which is compatible with the structure maps and preserves the bottom element.
We can then show the following:

Proposition 2.8. The map f : A⊥ → LSA is an order isomorphism.

Proof. First note that the projection LSA → S that sends a partial element
(s, v) to its extent s is ω-continuous and preserves the bottom element. The
unique map A → 1 induces a map A⊥ → 1⊥ = S, which can equivalently be
described as assigning to x ∈ A⊥ the truth value

(∃a ∈ A, η(a) = x) ∈ Ω

by Proposition 2.5. (A direct proof of this can also be found in Gilbert [34].)
Here the existential quantifier denotes mere existential quantification. By the
universal property of A⊥, the maps constructed so far commute with f , so if
f(x) = (s, v), then s ⇐⇒ ∃a ∈ A, x = η(a).

Now let us show that f exhibits A⊥ as suborder of LSA. Suppose f(x) =
(s, v) and f(x′) = (s′, v′) such that (s, v) ≤ (s′, v′) in LSA. We show x ≤ x′

by induction over x. If x = ⊥, then trivially x ≤ x′. If x = η(a) for some
a ∈ A, then s′ ≥ s = >, hence s′ = >. From this it follows by our initial
remark that there merely exists a′ ∈ A such that x′ = η(a′). In particular,
a = v(∗) = v′(∗) = a′, where ∗ ∈ > is the unique element of the unit set, hence
x = x′. Now let x =

∨
U be the join of a directed enumerable subset U ⊆ A⊥.

We may assume that for all u ∈ U , if f(u) ≤ f(x′), then u ≤ x′. Thus u ≤ x′
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because f(u) ≤ f(x) ≤ f(x′) for all u. But then x =
∨
U ≤ x′ by definition of

least upper bound.
It remains to show that f is surjective and hence an order isomorphism.

For this we must construct for each partial element (s, v) ∈ LSA an element
x ∈ A⊥ such that f(x) = (s, v). We proceed by induction over s. We can set
x = ⊥ if s = ⊥ and x = η(v(∗)) if s = >. Now let s =

∨
U be a directed

enumerable join in LSA. We may assume that for partial elements of the form
w : u → A with u ∈ U there merely exists x ∈ A⊥ such that f(x) = (u,w).
Because f : A⊥ → LSA was already proved to be the inclusion of a suborder,

V = {x ∈ A⊥ | f(x) = (u, v|u) for some u ∈ U}

embeds into U . By the induction hypothesis, it is isomorphic to U , hence
directed and enumerable. Now f(

∨
V ) =

∨
f(V ) =

∨
u∈U (u, v|u) = (s, v).

2.5 The lower reals

A Dedekind cut is a pair of sets of rational numbers (L,U) of the form L =
(∞, x) ∩Q and U = (x,∞) ∩Q for some real number x. The condition that
(L,U) is of this form can be stated purely in terms of rational numbers without
referring to the real numbers, so the (Dedekind) real numbers R can be defined
as the set of all pairs (L,U) satisfying these requirements; see e.g. Johnstone
[50]. Constructively, even a bounded subset of R does not necessarily have
a supremum. This is problematic in integration theory, because integrals of
functions on non-compact spaces are constructed by approximating them from
below.

A lower real is given only by the lower part L. Note that, constructively, U
cannot be reconstructed from just L or vice-versa. In the setting of synthetic
topology, it is natural to ask that the subsets L (and U) are valued in the
Sierpinski space S, so that they correspond to subsets of Q which are open
with respect to S. For Dedekind reals, this has been studied extensively by
Lešnik [59]. The usage of the initial σ-frame S in the definition of Dedekind
real numbers is also proposed in the HoTT book (Section 11.2) and has been
formalized by Gilbert [34]. For us S = S is the Sierpinski space, so real
numbers x given by open Dedekind cuts can be understood as those for which
the predicates q < x and q > x on rational numbers q are semi-decidable. If x
is a lower real, then only the predicate q < x will be semi-decidable. We use
the symbol R to refer to the Dedekind reals valued in S and likewise Rl for the
set of lower reals valued in S.

Definition 2.9 (Rlow.v:46). A lower real is an open subset L : Q→ S of Q
satisfying the following axioms:

• There merely exists q ∈ Q such that L(q),

https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Rlow.v#L46
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• for all q ∈ Q, if L(q) then there merely exists q′ > q such that L(q′), and

• for all q < q′ ∈ Q, if L(q′), then L(q).

The set of all lower reals is denoted by Rl. For q ∈ Q let

q = {p ∈ Q | p < q} ∈ Rl.

The subset of non-negative lower reals is given by

R+
l = {L ∈ Rl | ∀q ∈ Q, q < 0 =⇒ L(q)}.

Note that ∞ = Q ∈ Rl is a lower real, but that −∞ (however it may be
defined) is not in Rl. In predicative foundations, the Dedekind or lower reals
usually have to be parameterized by a universe level i, corresponding to the
size of the set of truth values Ωi the lower (and upper) cuts are valued in. The
resulting set of reals will only be an element of the (i+ 1)th universe. Using
the set of open truth values S, we avoid this nuisance and obtain just one set
of Dedekind and lower reals, respectively.

Crucial for the use of lower reals in integration theory is their order-theoretic
structure:

Proposition 2.10 (Rlow.v). The lower reals endowed with the relation

L1 ≤ L2 ⇐⇒ ∀q ∈ Q, q ∈ L1 =⇒ q ∈ L2

for L1, L2 ∈ Rl are a partial order. Finite meets and enumerable joins in Rl
exist, are computed pointwise and satisfy the distributivity law x ∧ (

∨
n∈N yn) =∨

n∈N (x ∧ y). The suborder of non-negative lower reals R+
l is a σ-frame. The

map q 7→ q exhibits Q as suborder of Rl.

In view of Proposition 2.10, it is natural to wonder whether Rl is obtained
by a completion process of Q. This is indeed the case. Define a cover relation
on Q by q /U for enumerable directed U ⊆ Q such that

∨
U exists and is equal

to q. The embedding Q ⊆ Rl preserves enumerable joins and thus induces an
ω-continuous map f : Qω → Rl. Similarly we have f+ : (Q+)ω → R+

l , where
Q+ is understood as an ω-cpo presentation with the restricted cover relation of
Q.

Theorem 2.11. The unique ω-continuous maps f : Qω → Rl and f+ :
(Q+)ω → R+

l under Q respectively Q+ are order isomorphisms.

Noting that the two operations preserve covers, we conclude with Proposition
2.3 the following:

Corollary 2.12 (Rlow.v). Addition on Q and multiplication on Q+ extend
uniquely to ω-continuous operations on Rl and R+

l , respectively.

https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Rlow.v
https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Rlow.v
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Our Coq formalization includes definitions of addition on Rl (Rlow.v:330)
and multiplication of lower reals by rational numbers (Rlow.v:1376), but does
not prove uniqueness as asserted by Corollary 2.12.

Multiplication cannot be (constructively) extended to an operation on
all lower reals because it is not monotone. In terms of lower cuts, we have
q ∈ (L1 + L2) if and only if there merely exist q1 ∈ L1 and q2 ∈ L2 such that
q1 + q2 = q, and similarly for the product L1 · L2 if L1, L2 ∈ R+

l .
The statement analogous to Theorem 2.11 for the usual lower reals (which

are not required to be valued in S) and completion under arbitrary directed
joins can be shown as follows. The proposed inverse g to f maps a lower
real L : Q → Ω to the join g(L) =

∨
q∈L η(q) in the completion of Q under

arbitrary directed joins. This defines a continuous map which is compatible
with the inclusions of Q, hence gf = id by the universal property of the
completion. On the other hand, fg = id because L =

∨
q∈Q q for all L.

Unfortunately, this proof does not directly transfer to our situation because
lower reals L : Q→ S are not necessarily enumerable in the sense that there is
a surjection N� L = {q ∈ Q | L(q)}, at least not in the absence of countable
choice.

Proof of Theorem 2.11. For brevity, we only prove the statement about Rl, the
proof for R+

l being similar. Note that the covers of Q are stable under binary
joins, thus Qω has binary joins and hence arbitrary enumerable joins. This
allows us to construct a map g : Rl → Qω as follows. Let L ∈ Rl and pick
q ∈ L. For each p ∈ Q, let s 7→ ps be the unique ω-continuous map S → Qω

which sends ⊥ to η(q) and > to η(p). Now set

g(L) =
∨
p∈Q

pL(p).

If p ∈ L, then pL(p) = η(p) by definition, and so
∨
q∈Q qL(q) ≥ η(p). Thus g is

well-defined as it does not depend on the choice of q.
g is defined as composition of ω-continuous maps, so is ω-continuous itself.

It is compatible with the structure maps Q→ Rl and Q→ Qω because

g(q) =
∨
p∈Q

pq(p) =
∨
p<q

η(p) = η(q)

by definition of the cover relation on Q. It follows that gf = id by the universal
property of Qω.

Note that f preserves arbitrary enumerable joins (not necessarily directed)
because the map Q→ Rl preserves binary joins. Let L ∈ Rl. It can be shown
by induction over L(p) that f(pL(p)) ≤ L for all p ∈ Q. Thus

f(g(L)) = f(
∨
p∈Q

pL(p)) =
∨
p∈Q

f(pL(p)) ≤ L.

https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Rlow.v#L330
https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Rlow.v#L1376
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On the other hand, suppose q ∈ L and let us show that q ∈ f(g(L)), i.e. that
L ≤ f(g(L)). Because L is a rounded lower subset of Q, there merely exists
q′ > q such that q′ ∈ L. Then f(q′L(q′)) = q′ ≤ f(g(L)), hence q ∈ f(g(L)).

2.6 Integrals and Valuations

In this section we define valuations, which play the role of measures but
are defined only on opens, and integrals. We then prove a version of the
Riesz theorem, which states that there is a one-to-one correspondence between
valuations and integrals. Valuations are often preferred over measures in
constructive mathematics because measures would have to be valued in the
hyperreals [21]. They have a long tradition in the domain-theoretic semantics
of probabilistic computations, see e.g. Jones and Plotkin [51]. It is observed
there that, classically, valuations on compact Hausdorff spaces are in bijective
correspondence with regular measures. Our proof of the Riesz theorem is
inspired by Coquand and Spitters [22] and Vickers [91], who prove similar
results in the setting of locales.

Fix a set A. Recall that O(A), the set of open subsets of A, is defined as the
set of functions A→ S. The σ-frame structures of S and R+

l induce σ-frame
structures on the sets of functions O(A) and A→ R+

l , with all structure defined
pointwise.

Definition 2.13 (Valuations.v:49). An (ω-continuous) valuation on a set A
is an ω-continuous map µ : O(A)→ R+

l preserving the bottom element that
satisfies the modularity law

µ(U) + µ(V ) = µ(U ∪ V ) + µ(U ∩ V ).

for all opens U, V ∈ O(A). µ is a sub-probability valuation if µ(A) ≤ 1. The
set of all valuations on A is denoted by V(A) and the set of sub-probability
valuations by V≤1(A).

Let r : S → Rl be the unique ω-continuous map such that r(⊥) = 0
and r(>) = 1. By postcomposition we obtain a map (A → S) → (A → Rl)
that assigns to each open U ∈ O(A) = (A → S) its (real) indicator function
1U = r(U) : A→ Rl.

The map U 7→ 1U is an order embedding, and so we can equivalently think
of a valuation µ as assigning lower reals to a certain subset of functions A→ R+

l .
The Riesz theorem states that every valuation µ can be extended to a lower
integral, which is a function defined on all maps A→ R+

l , and that every lower
integral is determined by its restriction to indicator functions.

Definition 2.14 (LowerIntegrals.v:76). A lower integral on A is an ω-
continuous map I : (A → R+

l ) → R+
l preserving the bottom element that is

https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Valuations.v#L49
https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/LowerIntegrals.v#L76
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furthermore additive, i.e. satisfies

I(f + g) = I(f) + I(g)

for all f, g : A→ R+
l . I is a sub-probability lower integral if I(1A) ≤ 1. The

set of all lower integrals on A is denoted by G(A) and the set of sub-probability
lower integrals by G≤1(A).

The reader might wonder at this point why we need the generality of sub-
probability valuations and integrals, as opposed to probability valuations and
integrals, which would assign to (the indicator function of) the whole space
the value 1. Valuations and integrals on some set A form partial orders, with
ordering defined pointwise. Now, if we restrict to proper probability valuations
and integrals, these orders will usually not have least elements (consider, for
example, valuations on the set of two elements). On the other hand, for their
sub-probabilistic versions we have the following, which will be crucial for the
interpretation of fixpoint operators in Section 2.9:

Proposition 2.15. The inclusions V≤1(A) ⊆ V(A) ⊆ (O(A) → R+
l ) and

G≤1(A) ⊆ G(A) ⊆ ((A→ R+
l )→ R+

l ) are embeddings of ω-cpos with bottom
elements.

Proposition 2.16. Every lower integral I is compatible with multiplication
by scalars from R+

l , in the sense that I(af) = aI(f) for all a ∈ R+
l and

f : A→ R+
l . In particular, lower integrals are linear over R+

l .

Proof. If a ∈ N, then I(af) = I(f + · · · + f) = aI(f) because I is additive.
Thus if a = m

n is a positive rational, then nI(af) = I(naf) = mI(f), hence
I(af) = m

n I(f). If U is a directed enumerable set of lower reals such that for
each a ∈ U we have I(af) = aI(f) for all f , then

I((
∨
U)f) = I(

∨
a∈U

(af)) = (
∨
U)I(f)

by ω-continuity of I and multiplication, so I is compatible with multiplication
by
∨
U . Because R+

l is the ω-cpo completion of Q+ (Theorem 2.11), it follows
that I is compatible with scalar multiplication by arbitrary non-negative lower
reals a.

We are now ready to state the central result of this section.

Theorem 2.17 (Riesz). The assignment

I 7→ (U 7→ I(1U ))

defines a map G(A)→ V(A) that restricts to a map G≤1(A)→ V≤1(A). Both
maps are order isomorphisms.
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We begin the proof by showing that restrictions of lower integrals to indicator
functions are valuations.

Lemma 2.18 (Riesz1.v:22). Let I be an integral on A. Then µI : U 7→ I(1U )
is a valuation on A. If I is a sub-probability integral, then µI is a sub-probability
valuation.

Proof. Recall that 1U is obtained by postcomposing U : A → S with the
unique ω-continuous map r : S → R+

l that satisfies r(⊥) = 0 and r(>) = 1.
Thus U 7→ 1U is ω-continuous, too, hence ω-continuity of µI follows from
ω-continuity of I. By definition µI(A) = I(1A), so if the latter is ≤ 1, then so
is the former.

What remains to be shown is that µI satisfies the modularity law, i.e. that

I(1U∪V ) + I(1U∩V ) = I(1U ) + I(1V ).

holds for all U, V ∈ O(A). By linearity of I and the definition of indicator
functions, it will suffice to show that for all s, t ∈ S it holds that

r(s ∨ t) + r(s ∧ t) = r(s) + r(t), (2.4)

and we will do so by induction over s. If s = >, both sides are equal to 1 + r(t),
and if s = ⊥, then both sides are equal to r(t). Now let s =

∨
U for an

enumerable directed subset U ⊆ S, and suppose that equation (2.4) holds with
u in place of s for all u ∈ U . Using the fact that the involved operations binary
meet and join with t, addition and r are all ω-continuous, we compute

r(s ∨ t) + r(s ∧ t) =
∨
u∈U

(r(u ∨ t) + r(u ∧ t))

=
∨
u∈U

(r(u) + r(t))

= r(s) + r(t).

Next we construct the extension
∫
− dµ of a valuation µ to an integral. Fix

µ.

Definition 2.19. Let f : A → R+
l . The lower µ-integral

∫
f dµ ∈ R+

l is
defined as follows. For q ∈ Q+ let

[f > q] = {x ∈ A | q < f(x)};

it is an open subset of A. Let

sf,m,n =
mn∑
i=1

1

m
µ([f >

i

m
])

https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Riesz1.v#L22
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for m,n ∈ N. Now ∫
fdµ =

∨
m,n∈N

sf,m,n.

The main difficulty in showing that f 7→
∫
f dµ is indeed a lower integral is

the verification of linearity. Our main tool will be the generalized modularity
lemma, originally due to Horn and Tarski [42, corollary 1.3] in the special case
of boolean algebras. More recent references are Coquand and Spitters [22] and
Vickers [91]; the latter also contains a proof of the version that will be used
here. Generalized modularity is phrased in terms of the following construction,
which in the special case L = O(A) can be understood as the submonoid of
functions A→ R+

l generated by the indicator functions 1U for U ∈ O(A).

Definition 2.20. Let L be a distributive lattice with bottom element. Themod-
ular monoid M(L) is the commutative monoid (written additively) generated
by the carrier of L subject to

a+ b = (a ∧ b) + (a ∨ b)

for all a, b ∈ L, and 0 = ⊥.

Note that the modularity law and the preservation of bottom elements
guarantee precisely that valuations µ : O(A)→ Rl factor uniquely as monoid
homomorphism L(O(A))→ Rl.

Lemma 2.21 (Generalized Modularity Lemma). Let L be a distributive lattice
and x1, . . . , xn ∈ L. Then in M(L) we have

n∑
i=1

xi =
n∑
k=1

∨
{xI | I ⊆ {1, . . . , n}, |I| = k}

where xI =
∧
{xi | i ∈ I} for decidable I ⊆ {1, . . . , n}.

Let q ∈ Q+ and f : A → R+
l . Define [f > q]0 ⊆ A to be [f > q] if q > 0

and equal to A if q = 0.

Lemma 2.22. Let f, g : A→ R+
l . Then in M(O(A)) we have

n∑
k=1

([f > k] + [g > k])

=

2n∑
k=1

∨
{[f > i]0 ∧ [g > j]0 | i, j ∈ {0, . . . , n}, i+ j = k}

for all n > 0.
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Proof. Regarding the left-hand side as a sum with 2n summands, we have by
the Generalized Modularity Lemma 2.21

n∑
k=1

([f > k] + [g > k])

=
2n∑
k=1

∨
{[f > I] ∧ [g > J ] | I, J ⊆ {1, . . . , n}, |I|+ |J | = k}

where [f > I] =
∧
{[f > i] | i ∈ I} and similarly [g > J ] =

∧
{[g > j] | j ∈ J}.

Because [f > i0] ⊇ [f > i1] whenever i0 ≤ i1, we have [f > I] = [f >
∨
I]

for inhabited I ⊆ {1, . . . , n}. If I is empty, then
∨
I = 0 and hence [f >

I] = A = [f >
∨
I]0. It follows that [f > I] ≤ [f > {1, . . . , `}]0 = [f > `]0

if I ⊆ {1, . . . , n} has ` elements and similarly for [g > J ]. Discarding small
elements from joins, we obtain∨

{[f > I] ∧ [g > J ] | I, J ⊆ {1, . . . , n}, |I|+ |J | = k}

=
∨
{[f > i]0 ∧ [g > j]0 | i, j ∈ {0, . . . , n}, i+ j = k}

for 1 ≤ k ≤ 2n.

Lemma 2.23. Let f : A→ R+
l . Suppose m,m′, n, n′ are positive integers such

that n ≤ n′ and m |m′ (i.e. m divides m′). Then sf,m,n ≤ sf,m′,n′ . The family
(sf,m,n)m,n is directed.

Proof. The inequality is clear if m = m′, so by transitivity it will suffice to
prove the inequality for n′ = n and m′ = mq for some integer q > 0. Dividing
i by q with remainder, we obtain for each integer 1 ≤ i ≤ m′n unique integers
0 ≤ k ≤ mn− 1 and 1 ≤ j ≤ q such that i = qk + j. Thus

sf,m′,n =
1

m′

m′n∑
i=1

µ([f >
i

m′
]) =

1

m

mn−1∑
k=0

1

q

q∑
j=1

µ([f >
qk + j

m′
]).

Now [f > qk+j
m′ ] ≥ [f > q(k+1)

m′ ] = [f > k+1
m ], hence

1

m

mn−1∑
k=0

1

q

q∑
j=1

µ([f >
qk + j

m′
]) ≥ 1

m

mn−1∑
k=0

µ([f >
k + 1

m
]) = sf,m,n

by monotonicity of µ. Both m |m′ and n ≤ n′ are directed partial orders on
the positive integers, thus (sf,m,n)m,n is a directed family.

Lemma 2.24. Let µ be a valuation on A. Then the assignment f 7→
∫
f dµ is

a lower integral.
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Proof. We verify the conditions of Definition 2.14.

Preservation of ⊥. If f = 0 is the constant function with value zero,
then [f > q] = ∅ for all q > 0, hence sf,m,n = 0 for all m,n, so

∫
f dµ =∨

m,n sf,m,n = 0.

ω-continuity. The integral is defined in terms of the following operations,
all of which are ω-continuous: f 7→ [f > q], µ, addition, scalar multiplication
and join.

Additivity. Let f, g : A→ R+
l . Let m,n ≥ 1. Note that

∫
f dµ+

∫
g dµ =∨

m,n (sf,m,n + sg,m,n) because the families (s−,m,n)mn are directed (Lemma
2.23) and addition is ω-continuous. Application of Lemma 2.22 for the functions
mf and mg gives

sf,m,n+sg,m,n =
1

m

2mn∑
k=1

µ(
⋃
{[f > i

m
]0 ∩ [g >

j

m
]0 | 0 ≤ i, j ≤ mn, i+ j = k}︸ ︷︷ ︸

⊆[f+g> k
m

]

),

which is ≤ s(f+g),m,2n. Letting n and m vary, we conclude
∫
f dµ+

∫
g dµ ≤∫

(f + g) dµ.

On the other hand, let q ∈ Q such that q <
∫
f + g dµ. We will show q <∫

f dµ+
∫
g dµ. By definition of

∫
− dµ as a join, there merely exist m,n ∈ N

such that q < sf+g,m,n. Thus there are rational numbers qk < µ([f + g > k
m ])

for 1 ≤ k ≤ nm such that q = 1
m

∑mn
k=1 qk. We have

[f + g >
k

m
] =

⋃
m|m′

⋃
{[f > i

m′
] ∩ [g >

j

m′
] | i, j ∈ N,

i+ j

m′
=

k

m
}

for each k and the outer union on the right-hand side is directed, with upper
bounds given by common multiples of the m′. Thus µ commutes with the outer
union.

It follows that for each k there is m′k such that

qk < µ(
⋃
{[f > i

m′k
] ∩ [g >

j

m′k
] | i, j ∈ N,

i+ j

m′k
=

k

m
}). (2.5)

By taking upper bounds wrt. divisibility, we may assume m′k = m′ for all k
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and a single m′ such that m|m′. We obtain∫
f dµ+

∫
f dµ

≥ sf,m′,n + sg,m′,n

=
1

m′

2m′n∑
`=1

µ(
⋃
{[f > i

m′
] ∩ [g >

j

m′
] | i, j ∈ N, i+ j = `})

=
1

m

2mn−1∑
`′=0

m

m′

m′/m∑
`′′=1

µ(
⋃
{[f > i

m′
] ∩ [g >

j

m′
] | i, j ∈ N, i+ j = `′

m′

m
+ `′′})

by decomposing the index ` as ` = `′ mm′ + `′′. Now

⋃
{[f > i

m′
] ∩ [g >

j

m′
] | i, j ∈ N, i+ j = `′

m′

m
+ `′′}

⊇
⋃
{[f > i

m
] ∩ [g >

j

m
] | i, j ∈ N, i+ j = `′ + 1},

for all ` and `′, which is independent of `′. Thus∫
f dµ+

∫
f dµ

≥ 1

m

2mn∑
k=1

µ(
⋃
{[f > i

m
] ∩ [g >

j

m
] | i, j ∈ N, i+ j = k})︸ ︷︷ ︸

>qk if k≤nm

>
1

m

mn∑
k=1

qk

= q

where we reindexed with k = `′ + 1 and used equation (2.5). q <
∫
f + g dµ

was arbitrary, hence
∫
f + g dµ ≤

∫
f dµ+

∫
g dµ.

Proof of Theorem 2.17. By Lemma 2.18, the restriction µI of an integral I
to indicator functions is a valuation, and by Lemma 2.24 the assignment
f 7→

∫
f dµ is an integral for all valuations µ. The two functions are monotone

and restrict to functions on sub-probability valuations and integrals. It remains
to show that

(1)
∫
− dµ is an extension of µ, i.e.

∫
1U dµ = µ(U) for all opens U ∈ O(A),

and

(2) every integral is uniquely determined by its value on indicator functions.
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(1). Let U ∈ O(A) be an open subset. Then [1U > q] = ∅ for all q ≥ 1,
and [1U > q] = U for all q < 1. Thus

s1U ,m,n =
1

m

mn∑
i=1

µ([1U >
i

m
]) =

1

m

m−1∑
i=1

µ(U) =
m− 1

m
µ(U)

for all m,n > 1, and we conclude
∫
1U dµ =

∨
m>0

m−1
m µ(U) = µ(U).

(2). Let I be an integral and let f : A→ R+
l . Then

f =
∨

m,n≥1

1

m

mn∑
i=1

1[f> i
m

].

and this join is directed (for the same reason that (sf,m,n)mn is a directed
family). By linearity (Proposition 2.16) and ω-continuity of I, we have

I(f) =
∨

m,n≥1

1

m

mn∑
i=1

I(1[f> i
m

]),

thus I is uniquely determined by its restriction to indicator functions.

2.7 The Giry monad

By definition, there are inclusions G≤1(A) ⊆ G(A) ⊆ ((A → R+
l ) → R+

l ).
The operator ContR+

l
: A 7→ ((A → R+

l ) → R+
l ) is the continuation monad

[65] instantiated with R+
l . As we are working internally (i.e. an internal

monad corresponds to an external strong monad), monad structure on an
operator M : Set→ Set is given by unit maps η : A→M(A) and bind maps
>>=: M(A)× (A→M(B))→M(B) for all sets A,B, which satisfy unit and
associativity laws. In case of the continuation monad M = ContR+

l
,

η(a) = (f 7→ f(a))

is the map that evaluates a given f : A→ R+
l at a certain a ∈ A, and bind is

given by
x >>= y = (f 7→ x(a 7→ y(a)(f))),

where x ∈M(A), y : A→M(B), f : A→ R+
l and a ∈ A.

By the Riesz Theorem 2.17, G(A) ∼= V(A) and G≤1(A) ∼= V≤1(A). This
justifies defining the Giry monad of (sub-probability) valuations as follows:

Definition and Proposition 2.25 (Giry.v). The unit and bind operations
of the continuation monad ContR+

l
restrict to operations on (sub-probability)

integrals. The (sub-probabilistic) Giry monad is given by the operator A 7→
G(A) (resp. A 7→ G≤1(A)) and the restricted unit and bind operations of the
continuation monad.

https://github.com/FFaissole/Valuations/blob/d06d2c8c9cce3ddf6137ca3440ab02031912d292/Giry.v
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Proof. We need to show stability of G and G≤1 under η and >>=. The
verification of the rules of lower integrals is done by unfolding the pointwise
definition of addition and the partial ordering on functions A→ R+

l . We show
how some of the rules can be derived, the other proofs being similar.

If a ∈ A and f, g : A→ R+
l , then η(a)(f + g) = (f + g)(a) = f(a) + g(a) =

η(a)(f) + η(a)(g), thus η(a) is linear. Let I ∈ G(A) and J : A → G(B).
ω-continuity of I >>= J can be seen as follows. Let U ⊆ (B → R+

l ) be a
directed enumerable subset of the function space. Then for each a ∈ A it holds
that J (a)(

∨
U) =

∨
f∈U J (a)(f) because J (a) is ω-continuous. Thus

(I >>= J )(
∨
U) = I(a 7→

∨
f∈U
J (a)(f))

= I(
∨
f∈U

(a 7→ J (a)(f)))

=
∨
f∈U
I(a 7→ J (a)(f))

=
∨
f∈U

(I >>= J )(f)

using the pointwise definition of joins on A→ R+
l and the ω-continuity of I.

We have η(a)(1A) = 1A(a) = 1 for all a ∈ A, so η is valued in sub-
probability integrals. If I ∈ G≤1(A) and J : A→ G≤1(B), then a 7→ J (a)(1B)
is a function ≤ 1A because J (a) is a sub-probability integral on B for all a.
Thus (I >>= J )(1B) ≤ I(1A) ≤ 1 by monotonicity of I and I being sub-
probabilistic.

Vickers [91] proves that the variant of the Giry monad on the category of
locales is commutative. Commutativity of G would mean that for I ∈ G(A)
and J ∈ G(B) the two integrals

(I I J )(f) = I(a 7→ J (b 7→ f(a, b))) (2.6)

and
(I J J )(f) = J (b 7→ I(a 7→ f(a, b)))

on A × B agree.2 In classical mathematics, this corresponds to the Fubini
theorem∫

A

(∫
B
f(a, b) db

)
da =

∫
B

(∫
A
f(a, b) da

)
db =

∫
A×B

f(a, b) d(a, b)

and uniqueness of product measures.
2Vickers uses / and . instead of J and I here; we reserve unfilled triangles for the

(unrelated) cover relations of ω-cpo presentations.
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However, the proof given in Vickers [91] does not directly translate to our
setting because it relies on the product X × Y of locales being dual to the
coproduct O(X) ⊗ O(Y ) of underlying frames. In synthetic topology, this
corresponds to products having the product topology:

Definition 2.26. Let A and B be sets. For U ∈ O(A) and V ∈ O(B), let

U × V = {(a, b) ∈ A×B | a ∈ U ∧ b ∈ V } ∈ O(A×B);

it is open because S is closed under binary meets. A × B has the product
topology if O(A × B) ⊆ P(A × B) is the least subset that is closed under
enumerable joins and contains the sets U × V for all U ⊆ A and V ⊆ B open.

Note that we require that the topology on A×B is generated by the basic
opens U × V under enumerable unions, as opposed to arbitrary ones. Our
notion of product topology is in a sense weaker than the one that can be found
in Lešnik [59, definitions 2.57 and 2.55]. There it is required that every open is
an overt (e.g. countable in our case) union of the basic opens U × V , while for
us the opens need only be generated by basic opens under enumerable unions.
The situation is comparable to the initial σ-frame and the Rosolini dominance:
In the presence of countable choice, the two definitions are equivalent.

The problem with the Fubini theorem in synthetic topology is that A×B
does not always have the product topology. Fortunately, A×B does have the
product topology in many special cases. Lešnik proves that if A and B are
strongly locally compact, then A×B has the product topology ([59], proposition
2.59). Thus finite products of countable discrete spaces and locally compact
metric spaces (e.g. R under suitable hypotheses, see Section 2.8) behave well,
and our Fubini theorem applies.

Theorem 2.27 (Fubini). Let I ∈ G(A) and J ∈ G(B) for sets A,B. Suppose
that A×B has the product topology. Then the two integrals I J J and I I J
on A×B agree.

The proof of Theorem 2.27 will occupy the remainder of Section 2.7. It is a
direct translation of the proof given by Vickers [91] for locales.

Theorem 2.28 (Principle of inclusion and exclusion, [91]). Let L be a lattice
with bottom element. Then for all x1, . . . , xn ∈ L it holds in M(L) that

(

n∨
i=1

xi) +
∑

I⊆{1,...,n}
|I| is even

xI =
∑

|I|⊆{1,...,n}
|I| is odd

xI

where xI =
∧
i∈I xi for I ⊆ {1, . . . , n} decidable.

Lemma 2.29 ([91]). Let u1, . . . , un ∈ Rl and v be lower reals. Then the
equation

∑n
i=1 ui + x = v has at most one solution x such that ui ≤ x for all i.
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Note that Lemma 2.29, as stated in the reference refers to the standard
lower reals, which are not required to be valued in S. However, the proof given
there also works for our lower reals; moreover, the open lower reals embed into
the standard lower reals so that uniqueness for the latter implies uniqueness
for the former.

Lemma 2.30. Let U ∈ O(A) and V ∈ O(B) be opens in sets A,B. Then for
all a ∈ A and b ∈ B it holds that

1U×V (a, b) = 1U (a) · 1V (b).

Proof. By definition of indicator functions and U × V , the lemma will follow if
we can show

r(s ∧ t) = r(s)r(t)

for all s, t ∈ S, where r : S → Rl is the unique map of ω-cpos satisfying
r(⊥) = 0 and r(>) = 1. For fixed t, the two ω-continuous maps s 7→ r(s ∧ t)
and s 7→ r(s)r(t) agree for s = ⊥ and s = >, so they agree by the universal
property of S = B⊥.

Proof of Theorem 2.27. For U ∈ O(A) and V ∈ O(B), we compute with
Lemma 2.30

(I J J )(1U×V ) = J (b 7→ I(a 7→ 1U (a)1V (b)))

= J (I(1U )1V )

= I(1U )J (1V )

and hence by symmetry

(I J J )(1U×V ) = (I I J )(1U×V ) = I(1U )J (1V ).

Because integrals are uniquely determined by their restriction to valuations,
it will be sufficient to show that a valuation µ on A × B is in turn uniquely
determined by its restriction to opens of the form U × V . A × B has the
product topology, so O(A×B) is the least set containing subsets of the form
U × V with U ⊆ A and V ⊆ B open that is closed under enumerable unions.
Equivalently, O(A×B) is generated under directed enumerable unions from
opens of the form U1 × V1 ∪ · · · ∪ Un × Vn for Ui ⊆ A open and Vi ⊆ B open,
1 ≤ i ≤ n. It will thus suffice to prove that µ is uniquely determined by its
value on finite unions of products of opens. Applying the principle of inclusion
and exclusion (Theorem 2.28), we obtain

µ(
n⋃
i=1

(Ui × Vi)) +
∑

I⊆{1,...,n}
|I| is even

µ(UI × VI) =
∑

|I|⊆{1,...,n}
|I| is odd

µ(UI × VI),

where UI =
⋂
i∈I Ui and VI =

⋂
i∈I Vi (hence

⋂
i∈I (Ui × Vi) = UI × VI). By

monotonicity of µ, it holds that µ(UI × VI) ≤ µ(
⋃n
i=1 (Ui × Vi)), so by Lemma

2.29 the values µ(UI × VI) uniquely determine µ(
⋃n
i=1 (Ui × Vi)).
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2.8 The Lebesgue valuation

Having studied valuations in general, we now turn to constructing a concrete
valuation on a non-discrete space: The Lebesgue valuation on the reals. For this
we will need that the intrinsic topology of the Dedekind reals agrees with the
topology that is induced by the Euclidean metric, i.e. that R is metrizable [59].
We proceed by defining a σ-frame of formal real opens and state metrizability as
an isomorphism between the formal and the intrinsic real opens. The Lebesgue
valuation can then be defined by a universal property.

Definition 2.31. The partial order L is the least suborder of P(Q) containing
the sets (a, b) = {x ∈ Q | a < q < b} for all a, b ∈ Q that is closed under binary
unions.

Every element x ∈ L has a unique presentation as a disjoint union

x = (a1, b1) ∪̇ . . . ∪̇(an, bn)

for rational numbers ai, bi such that ai < bi ≤ ai+1 for i = 1, . . . , n−1. We refer
to the elements (ai, bi) as the connected components of x. The decomposition
into connected components can be used to construct L as a subset of lists of
rational numbers, and this definition is purely combinatorial and does not use
the subobject classifier Ω. It also follows from the decomposition that L is a
distributive lattice with bottom element, i.e. that it has meets: We have( m⋃

i=1

(ai, bi)

)
∩
( n⋃
j=1

(a′j , b
′
j)

)
=
⋃
i,j

(
(ai, bi) ∩ (cj , dj)

)
and (ai, bi) ∩ (cj , dj) = (max(ai, cj),min(bi, dj)) for all i, j, which is in L.

Definition 2.32. The cover relation on L is generated by

(a, b) /

{ n⋃
j=1

(a′j , b
′
j) | a < a′j , b

′
j < b for j ≤ n

}

for a < b under binary unions.

Thus (
⋃m
i=1(ai, bi)) /U if U is the set of elements

⋃n
j=1(a′j , b

′
j) such that for

each j there exists i with ai < a′j and b
′
j < bi. This cover relation is stable under

binary meets and, by definition, joins. It follows that the ω-cpo completion Lω
has enumerable joins and finite meets satisfying the distributivity law. The
bottom element of ∅ ∈ L is also a bottom element of Lω. Finally, the subset
of elements of Lω which are bounded by t =

∨
n∈N(−n, n) contains the image

of L and is closed under joins, hence t is a top element of Lω. Thus Lω is a
σ-frame.
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Definition 2.33. The σ-frame of formal real opens O(RF ) is given by the
ω-cpo completion of L with respect to the covers of Definition 2.32.

By definition, L ⊆ P(R), but in fact the rational intervals (a, b) are open:
Given a Dedekind real r = (`, u) ∈ R, we have r ∈ (a, b) if and only if `(a)∧u(b),
which is a truth value in S because `, u : Q → S. It follows that L ⊆ O(R).
This inclusion is cover preserving because (a, b) =

⋃
{(a′, b′) | a < a′ ≤ b′ < b}

as subsets of R. We obtain a morphism of ω-cpos O(RF ) → O(R). It is not
necessarily an isomorphism, but it will be assumed for the remainder of this
section that it is:

Assumption 2. The map O(RF )→ O(R) is an isomorphism of partial orders.

Lešnik [59, Section 5.3] proves that if one assumes the intuitionistic principles
function-function choice, the continuity principle (which is absurd in classical
logic) and the fan principle (every decidable bar is uniform), then every complete
metrically separable metric space is metrized. In particular, every open U ∈
O(R) is a countable union of metric balls, from which our Assumption 2 follows.
Lesnik’s assumptions hold in the K2 realizability topos and the big topos of
topological spaces, so Assumption 2 holds in these models, too.

Definition and Proposition 2.34. The map λ′ : L→ Q+ given by

λ′(
n⋃
i=1

(ai, bi)) =
n∑
i=1

bi − ai;

for n ≥ 0 and rationals ai < bi ≤ ai+1, 1 ≤ i ≤ n−1, is well-defined, monotone
and, when coerced to a function L→ R+

l , cover-preserving. The induced map
λ : O(R) ∼= Lω → R+

l is a valuation, which we refer to as the Lebesgue
valuation.

Proof. λ′ is well-defined because decompositions into connected components
are unique up to reordering. It is evidently monotone. If (a, b) / U , then
(a+ n−1, b− n−1) ∈ U for all n > 0, so that∨

u∈U
λ′(u) ≥

∨
n>0

λ′((a+ n−1, b− n−1)) = b− a = λ′((a, b)).

It follows that λ′ preserves general covers because we have λ′(x ∪ y) = λ′(x) +
λ′(y) if x and y are disjoint.

λ preserves the bottom element because λ′ does, and it is ω-continuous by
construction. What remains to be proved is the modular law

λ(x ∪ y) + λ(x ∩ y) = λ(x) + λ(y) (2.7)

for all x, y ∈ O(R), but we immediately reduce to x, y ∈ L by induction. In
turn, we prove equation (2.7) for x, y ∈ L by induction over the total number
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of connected components of x and y. It holds trivially if x = ∅ or y = ∅. If
x = (a, b) and y = (c, d) are rational intervals, then

λ(x ∪ y) + λ(x ∩ y)

= max(b, d)−min(a, c) + min(b, d)−max(a, c)

= b+ d− a− c
= λ(x) + λ(y)

so the equation holds in this case, too.
In the induction step we are given disjoint unions (a, b) ∪̇x and (c, d) ∪̇ y

such that b < r for all r ∈ x and d < s for all d ∈ y, at least after reordering the
connected components if necessary. If n is the number of connected components
of x and m that for y, we may assume that (2.7) holds for all pairs of elements
of L whose total number of connected components is at most n+m+ 1.

Suppose first that (a, b) and (c, d), are disjoint, wlog. say b ≤ c. Then (a, b)
is disjoint from all of x, (c, d) and y, thus

λ((a, b) ∪ x ∪ (c, d) ∪ y) = λ((a, b)) + λ(x ∪ (c, d) ∪ y).

By the induction hypothesis,

λ(x ∪ ((c, d) ∪ y)) = λ(x) + λ((c, d) ∪ y)− λ(x ∩ ((c, d) ∪ y)).

Because (a, b) is disjoint from (c, d) and y, we have

((a, b) ∪ x) ∩ ((c, d) ∪ y) = x ∩ ((c, d) ∪ y),

which combined with the previous equations yields the modular law for (a, b)∪x
and (c, d) ∪ y if (a, b) and (c, d) are disjoint.

Otherwise (a, b) and (c, d) intersect, so that (a, b) ∪ (c, d) = (e, f) with
e = min(a, c) and f = max(b, d). Without loss of generality we may assume
f = d, so that all of (a, b), (c, d) and (e, f) are disjoint from y. Thus

λ((a, b) ∪ x ∪ (c, d) ∪ y)

= λ(x ∪ (e, f) ∪ y)

= λ(x) + λ((e, f)) + λ(y)− λ(x ∩ ((e, f) ∪ y)

by the induction hypothesis for x and (e, f) ∪ y. The base case of two rational
intervals was already proved, thus

λ((e, f)) = λ((a, b)) + λ((c, d))− λ((a, b) ∩ (c, d)).

Because (a, b) is disjoint from y and λ′ maps disjoint unions to sums, we have

λ(((a, b) ∪ x) ∩ ((c, d) ∪ y)) = λ((a, b) ∩ (c, d)) + λ(x ∩ ((c, d) ∪ y)).
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Putting everything together, we obtain

λ((a, b) ∪ x ∪ (c, d) ∪ y)

= λ(x) + λ((a, b)) + λ(y) + λ((c, d))− λ(((a, b) ∪ x) ∩ ((c, d) ∪ y))

as required.

We can now define distributions on (subsets of) the real numbers for which
there exists a density with respect to the Lebesgue valuation. For example, the
normal distribution N (µ, σ2) has density

f(x) =
1

σ
√

2π
exp

(
− 1

2
(
x− µ
σ

)2
)
,

and so N (µ, σ2) ∈ G≤1(R) can be defined by

N (µ, σ2)(U) =

∫
U
f dλ =

∫
1Uf dλ

on opens U : R→ S.

2.9 Interpreting Rml

The sub-probability Giry monad G≤1 is defined on the cartesian closed category
of sets, and the sets of functions A→ G≤1(B) with the pointwise ordering form
ω-cpos with bottom elements. Similarly to Audebaud and Paulin-Mohring
[6], we obtain an interpretation of Rml, a call-by-value PCF with recursion
and probabilistic choice as effect. Because G≤1 is defined in terms of the
intrinsic topology (as opposed to the discrete one), we obtain furthermore an
interpretation of primitives for sampling from continuous distributions.

First recall the language PCF as in e.g. Plotkin and Power [68]. We consider
the fragment that has as base types N (natural numbers), B (booleans) and R
(real numbers), and as type formers finite products and exponentials. Thus the
set of types σ is inductively defined by

σ ::= N |B |R | 1 | σ × σ | σ → σ.

Terms M are given by

M ::= 0 | zero(M) | succ(M) | pred(M) | nat-to-real(M)|
true | false | if M then M else M |
M < M |M +M |M ·M | exp(M) | log(M) | sin(M) | . . . |
bernoulli | uniform | . . . |
∗ | 〈M,M〉 | π1(M) | π2(M)|
x | λx : σ.M |MM |
rec(f : σ → τ, x : σ.M)
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Here f and x can be any one of a fixed set of variables.
There are evident typing rules generating the well-typed terms Γ `M : σ

in a context Γ and rules generating equalities Γ ` M0 = M1 : σ. (The
reduction rules need not concern as here as we are interested in a denotational
semantics.) These rules are set up such that zero(M) : B is well-typed for
natural number terms M : N and equal to true if and only if M = 0. pred is
the predecessor function (with pred(0) = 0), and nat-to-real is the coercion
of natural numbers to real numbers. The operators <,+,−, · and exp, log, sin
are defined on terms of type R. The list of operators can be expanded as
needed with more functions that are constructively definable. Some operators
such as the log function are partial; in these cases the semantics of the program
is only defined when the operator is applied to a term that is guaranteed to be
in the operator’s domain.

The terms bernoulli : B and uniform : R are well-typed in every context
Γ; they represent sampling from a fair coin flip and the uniform distribution
on the unit interval, respectively. They are typed like constants of type B and
R, respectively, and every usage of bernoulli and uniform samples a fresh
value. To reuse sampled values, one must thus bind them to variables.

Much like the list of real operators, the list of distributions can be ex-
tended as needed with more constructively definable distributions, for example
the normal distribution. Alternatively, many distributions can also be con-
structed in the language itself if their density with respect to one of the built-in
distributions is definable.

The typing rule for the rec operator is as follows:

Γ, f : σ → τ, x : σ `M : τ

Γ ` rec(f : σ → τ, x : σ.M) : σ → τ

rec is used for unbounded recursion and hence satisfies the equation

rec(f : σ → τ, x : σ.M) = λx : σ.M [rec(f : σ → τ, x : σ.M)/f ].

Plotkin and Power [68] show that cartesian closed categories C equipped
with a suitable monad T can serve as models for call-by-value PCF. In our
case, C = Set is the category of sets of our ambient constructive logic, and our
monad is T = G≤1, the sub-probabilistic Giry monad. Let us verify that Set
and G≤1 satisfy the conditions of Plotkin and Power [68]:

• Set is a cartesian closed category enriched over ω-cpos by considering the
hom sets as discrete partial orders. It has coproducts (hence an object of
booleans) and a natural numbers object.

• The Kleisli category of G≤1 is enriched over ω-cpos with bottom element
via the pointwise ordering on maps A → G≤1(B). Note that here it is
crucial that we work with G≤1 instead of G=1 as for the latter the hom
sets need not have bottom elements.
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• The strength of G≤1 preserves bottom elements because the integral
I I J of equation (2.6) vanishes if either I or J vanishes.

Types are now interpreted as follows:

JNK = N JBK = {0, 1} JRK = R J1K = 1

Jσ × τK = JσK× JτK Jσ → τK = (JσK→ G≤1(JτK))

Contexts Γ = (x1 : σ1, . . . , xn : σn) are interpreted as products Jσ1K×· · ·×JσnK.
The denotation of a term Γ `M : σ is a Kleisli arrow JMK : JΓK→ G≤1(JσK);

the complete set of clauses can be found in Plotkin and Power [68]. For example,
the denotation of a successor term succ(M) for some Γ `M : N is defined as
composition

JΓK G≤1(N) G≤1(N)
JMK G≤1(succ)

using the semantic successor function on the natural numbers object, and the
tuple term 〈M1,M2〉 for terms Γ `Mi : σi is defined as

JΓK G≤1(Jσ1K)×G≤1(Jσ2)K G≤1(Jσ1 × σ2K)
〈JM1K,JM2K〉 −I−

using the strength of G≤1.
A recursion term Γ ` rec(f : σ → τ, x : σ.M) : σ → τ for Γ, f : σ → τ, x :

σ `M : τ is interpreted as follows. First we define a monotone endofunction Y
on the partial order of maps k : JΓ, x : σK→ G≤1(JτK) as follows. k corresponds
to a map k̄ : JΓK→ (JσK→ G≤1(JτK)). Now

Y (k) : JΓ, v : σK JΓ, f : σ → τ, v : σK G≤1(JτK).
〈π1,k̄◦π1,π2〉 JMK

We then define Jrec(f : σ → τ, x : σ.M)K as the join of the sequence ⊥ ≤
Y (⊥) ≤ Y (Y (⊥)) ≤ . . . of functions JΓ, v : σK→ G≤1(JτK).

The denotations of real functions operators are the corresponding functions
on R. The denotation of the comparison operator < is an exception: There is
no constructively definable function R×R→ {0, 1} that decides the ordering of
real numbers; in fact such a function would contradict Assumption 2. However,
there is a function l : R× R→ G≤1({0, 1}) such that

l(x0, x1) =


η(1) if x0 < x1

η(0) if x0 > x1

⊥ if x0 = x1

and we take l to be the denotation of the < operator. l is can be constructed
as follows: As proved by Gilbert [34], there is a map

d : {(a, b) ∈ S× S | a ∧ b = ⊥} → {0, 1}⊥
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such that d((>,⊥)) = 0 and d((⊥,>)) = 1. Recall that a Dedekind real number
x is given by a pair (L,U) of open sets of rational numbers L,U : Q → S
satisfying conditions such that L = {q ∈ Q | q < x} and U = {q ∈ Q |
q > x}. Thus given two real numbers x1 = (L1, U1) an x2 = (L2, U2), it
holds that L1 ∩ U2 is inhabited if and only if x1 > x2, and symmetrically
that L2 ∩ U1 is inhabited if and only if x1 < x2. Inhabitation of open subsets
U ⊆ A of countable sets A is an open proposition because it is equivalent to∨
a∈A U(a), which is a countable disjunction of open propositions. It follows

that inhabitation of L1 ∩ U2 is a proposition s1 ∈ S, and similarly inhabitation
of L2 ∩ U1 is a proposition s2 ∈ S. s1 ∧ s2 is contradictory. We now set
l(x1, x2) = φ(d(s1, s2)), where φ is the canonical map {0, 1}⊥ → G≤1({0, 1}).

The Bernoulli sampling constant Γ ` bernoulli : B is interpreted as the
constant function JΓK→ G≤1(JBK) with value the lower integral corresponding
to the valuation ν(0) = 1

2 and ν(1) = 1
2 . Similarly, the uniform term is

interpreted as the lower integral corresponding to λ(0,1)(U) = λ(U ∩ (0, 1))
using the Lebesgue valuation of Section 2.8. (Note that we have to use the
open interval (0, 1) here instead of the closed interval [0, 1] because U ∩ [0, 1] is
not always open in R, even if U is open.)

Consider the problem of sampling from a standard normal distribution
given only the uniform built-in. One way to achieve this using the Marsaglia
polar method [64] is as follows:

let rec normal =
let

x = 2 * uniform - 1;
y = 2 * uniform - 1;
s = x * x + y * y;

in
if s < 1 then x * sqrt ((-2) * ln s / s)
else normal

Note that normal is defined by potentially infinite recursion but terminates
with probability 1, that is, JnormalK(R) = 1 ∈ Rl.

2.10 Conclusion

Contributions. This paper develops the foundations of integration theory in
synthetic topology based on the initial σ-frame. The initial σ-frame S is the
ω-cpo completion of the booleans. We discuss several alternative constructions
of free ω-cpo completions and show how product ω-cpos can be presented in
terms of presentations of their factors. It is shown that S is a dominance and
hence suitable for synthetic topology. Following Escardó and Knapp [30] we
show that the S-partial map classifier of a set A is given by its pointed ω-cpo
completion A⊥. A set of lower real numbers based on S is defined and shown
to satisfy the universal property of the ω-cpo completion of the rationals. This
set of lower reals is then used in definitions of valuations and lower integrals
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which take into account the intrinsic topology induced by S. The Riesz theorem
relating valuations and lower integrals is proved and used to define the Giry
monad. The Fubini theorem is shown to hold for sets A,B whose product has
the product topology. Finally, the Lebesgue valuation is defined under the
assumption of metrizability of R, which would be impossible if our valuations
were based on discrete topologies.

Related work. Much of our approach to lower integrals is adapted from
Steven Vickers’s work [90, 91] work on the same subject, but in the setting of
synthetic topology instead of locale theory. Lower integrals are better behaved
on locales than in synthetic topology in certain aspects. For example, the
Fubini theorem holds without restriction for locales, making the Giry monad
commutative, whereas we can only prove the Fubini theorem in synthetic
topology on the assumption that the involved products are topologized correctly.
On the other hand, the category of locales is not cartesian closed, whereas the
ambient category of sets in synthetic topology is even a elementary topos (or,
predicatively, a ΠW -pretopos).

Shulman [76, Section 11] proves the Brouwer fixpoint theorem in homotopy
type theory using synthetic topology. He uses modalities to mediate between the
homotopical and topological circle and other spaces. This spatial (modal) type
theory is modelled in any local topos, for example Johnstone’s topological topos
[49]. Fourman’s big topos that models the intuitionistic principles outlined in
Section 2.8 is also local. This paper does not focus on homotopy theory, thus
the methodology is different.

Escardó and Xu [29] use a similar big topos, but restricted to compact
spaces to model the fan-theorem in a simple type theory. Coquand et al. [23]
provide a stack model over Cantor space for univalent type theory. It is likely
that our work model can be given a constructive treatment by these methods;
see Coquand [20].

There is an interesting analogy with the semantics for higher order proba-
bilistic programming described in Heunen et al. [38], Staton et al. [79]. Noting
that the category of standard Borel spaces is not Cartesian closed, they embed it
into a supercategory (of quasi-Borel spaces) which is closed under exponentials.
A similar problem exists in synthetic topology: The category of topological
spaces is not Cartesian closed. The common solution is to consider a convenient
super-category. Escardó [28, Chapter 10] presents a number of subcategories
of presheaves over the category of topological spaces for this purpose. In our
case, it is more natural to consider the sheaves for the open cover topology. In
this light, one could consider our construction as first embedding in a bigger
category with (dependent) function types and then defining the monad on the
bigger category. One advantage of semantics in toposes is that they model all
of constructive mathematics, including the principle of unique choice. This
enables use of a strong internal logic to simplify arguments, as is exemplified
in this paper. On the other hand, our Fubini theorem holds only conditionally,
whereas it holds for arbitrary products of quasi-Borel spaces, making the Giry
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monad on quasi-Borel spaces commutative.
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Chapter 3

The 1-categorical multiverse
model

Abstract

Locally cartesian closed (lcc) categories are natural categorical models
of extensional dependent type theory. This paper introduces the “gros”
semantics in the category of lcc categories: Instead of constructing an
interpretation in a given individual lcc category, we show that also the
category of all lcc categories can be endowed with the structure of a model
of dependent type theory. The original interpretation in an individual lcc
category can then be recovered by slicing.

As in the original interpretation, we face the issue of coherence: Cate-
gorical structure is usually preserved by functors only up to isomorphism,
whereas syntactic substitution commutes strictly with all type theoretic
structure. Our solution involves a suitable presentation of the higher
category of lcc categories as model category. To that end, we construct a
model category of lcc sketches, from which we obtain by the formalism of
algebraically (co)fibrant objects model categories of strict lcc categories
and then algebraically cofibrant strict lcc categories. The latter is our
model of dependent type theory.

3.1 Introduction

Locally cartesian closed (lcc) categories are natural categorical models of
extensional dependent type theory [75]: Given an lcc category C, one interprets

• contexts Γ as objects of C;

• (simultaneous) substitutions from context ∆ to context Γ as morphisms
f : ∆→ Γ in C;

• types Γ ` σ as morphisms σ : domσ → Γ in C with codomain Γ; and

63
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• terms Γ ` s : σ as sections s : Γ � domσ : σ to the interpretations of
types.

A context extension Γ.σ is interpreted as the domain of σ. Application of a
substitution f : ∆→ Γ to a type Γ ` σ is interpreted as pullback

domσ[f ] domσ

∆ Γ

σ[f ] y σ

f

and similarly for terms Γ ` s : σ. By definition, the pullback functors f∗ :
C/Γ → C/∆ in lcc categories C have both left and right adjoints Σf a f∗ a Πf ,
and these are used for interpreting Σ-types and Π-types. For example, the
interpretation of a pair of types Γ ` σ and Γ.σ ` τ is a composable pair of
morphisms Γ.σ.τ

τ−→ Γ.σ
σ−→ Γ, and then the dependent product type Γ ` Πσ τ

is interpreted as Πσ(τ), which is an object of C/Γ, i.e. a morphism into Γ.
However, there is a slight mismatch: Syntactic substitution is functorial

and commutes strictly with type formers, whereas pullback is generally only
pseudo-functorial and hence preserves universal objects only up to isomorphism.
Here functoriality of substitution means that if one has a sequence E g−→ Γ

f−→ ∆
of substitutions, then we have equalities σ[g][f ] = σ[gf ] and s[g][f ] = s[gf ],
i.e. substituting in succession yields the same result as substituting with the
composition. For pullback functors, however, we are only guaranteed a natural
isomorphism f∗ ◦ g∗ ∼= (g ◦ f)∗. Similarly, in type theory we have (Πσ τ)[f ] =
Πσ[f ] τ [f+] (where f+ denotes the weakening of f along σ), whereas for pullback
functors there merely exist isomorphisms f∗(Πσ(τ)) ∼= Πf∗(σ) (f+)∗(τ).

In response to these problems, several notions of models with strict pull-
back operations were introduced, e.g. categories with families (cwfs) [27], and
coherence techniques were developed to “strictify” weak models such as lcc
categories to obtain models with well-behaved substitution [24, 40, 61]. Thus
to interpret dependent type theory in some lcc category C, one first constructs
an equivalence C ' Cs such that Cs can be endowed with the structure of a
strict model of type theory (say, cwf structure), and then interprets type theory
in Cs.

In this paper we construct cwf structure on the category of all lcc categories
instead of cwf structure on some specific lcc category. First note that the
classical interpretation of type theory in an lcc category C is essentially an
interpretation in the slice categories of C:

• Objects Γ ∈ Ob C can be identified with slice categories C/Γ.

• Morphisms f : ∆→ Γ can be identified with lcc functors f∗ : C/Γ → C/∆
which commute with the pullback functors Γ∗ : C → C/Γ and ∆∗ : C →
C/∆.
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• Morphisms σ : domσ → Γ with codomain Γ can be identified with the
objects of the slice categories C/Γ.

• Sections s : Γ� domσ : σ can be identified with morphisms 1→ σ with
1 = idΓ the terminal object in the slice category C/Γ.

Removing all reference to the base category C, we may now attempt to interpret

• each context Γ as a separate lcc category;

• a substitution from ∆ to Γ as an lcc functor f : Γ→ ∆;

• types Γ ` σ as objects σ ∈ Ob Γ; and

• terms Γ ` s : σ as morphisms s : 1→ σ from a terminal object 1 to σ.

In the original interpretation, substitution in types and terms is defined by the
pullback functor f∗ : C/Γ → C/∆ along a morphism f : ∆ → Γ. In our new
interpretation, f is already an lcc functor, which we simply apply to objects
and morphisms of lcc categories.

The idea that different contexts should be understood as different categories
is by no means novel, and indeed widespread among researchers of geometric
logic; see e.g. Vickers [88, section 4.5]. Not surprisingly, some of the ideas in
this paper have independently already been explored, in more explicit form, in
Vickers [92] for geometric logic. To my knowledge, however, an interpretation
of type theory along those lines, especially one with strict substitution, has
never been spelled out explicitly, and the present paper is an attempt at filling
this gap.

Like Seely’s original interpretation, the naive interpretation in the category
of lcc categories outlined above suffers from coherence issues: Lcc functors
preserve lcc structure up to isomorphism, but not necessarily up to equality,
and the latter would be required for a model of type theory.

Even worse, our interpretation of contexts as lcc categories does not admit
well-behaved context extensions. Recall that for a context Γ and a type Γ ` σ
in a cwf, a context extension consists of a context morphism p : Γ.σ → Γ and
a term Γ.σ ` v : σ[p] such that for every morphism f : ∆ → Γ and term
∆ ` s : σ[f ] there is a unique morphism 〈f, s〉 : ∆ → Γ.σ over Γ such that
v[〈f, s〉] = s. In our case a context morphism is an lcc functor in the opposite
direction. Thus a context extension of an lcc category Γ by σ ∈ Ob Γ would
consist of an lcc functor p : Γ → Γ.σ and a morphism v : 1 → p(σ) in Γ.σ,
and (p, v) would have to be suitably initial. At first sight it might seem that
the slice category Γ/σ is a good candidate: Pullback along the unique map
σ → 1 defines an lcc functor σ∗ : Γ ∼= Γ/1 → Γ/σ. The terminal object of
Γ/σ is the identity on σ, and applying σ∗ to σ itself yields the first projection
pr1 : σ × σ → σ. Thus the diagonal d : σ → σ × σ is a term Γ/σ ` d : σ∗(σ).
The problem is that, while this data is indeed universal, it is only so in the
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bicategorical sense (see Lemma 3.29): Given an lcc functor f : Γ → ∆ and
term ∆ ` w : f(σ), we obtain an lcc functor

〈f, s〉 : Γ/σ ∆/f(σ) ∆,
f/σ s∗

however, 〈f, s〉 commutes with σ∗ and f only up to natural isomorphism, the
equation 〈f, s〉(d) = s holds only up to this natural isomorphism, and 〈f, s〉 is
unique only up to unique isomorphism.

The issue with context extensions can be understood from the perspective
of comprehension categories, an alternative notion of model of type theory,
as follows. Our cwf is constructed on the opposite of Lcc, the category of
lcc categories and lcc functors.1 The corresponding comprehension category
should thus consist of a Grothendieck fibration p : E → Lccop and a functor
P : E → (Lccop)→ to the arrow category of Lccop such that

E (Lccop)→

Lccop

P

p cod

commutes and P(f) is a pullback square for each cartesian morphism f in E .
The data of a Grothendieck fibration p as above is equivalent to a (covariant)
functor Lcc→ Cat via the Grothendieck construction, and here we simply take
the forgetful functor. Thus the objects of E are pairs (Γ, τ) such that Γ is an
lcc category and τ ∈ Ob Γ, and a morphism (Γ, τ)→ (∆, σ) in E is a pair (f, k)
of lcc functor f : ∆→ Γ and morphism k : τ → f(σ) in Γ.

The functor P should assign to objects (Γ, τ) of E the projection of the
corresponding context extension, hence we define P(Γ, τ) = τ∗ : Γ→ Γ/τ as the
pullback functor to the slice category. The cartesian morphisms of E are those
with invertible vertical components k, so they are given up to isomorphism by
pairs of the form (f, id) : (Γ, f(σ))→ (∆, σ). The images of such morphisms
under P are squares

∆ Γ

∆/σ Γ/f(τ)

σ∗

f

f(τ)∗

f/σ

(3.1)

in Lcc. For (p,P) to be a comprehension category, they would have to be
pushout squares, but in fact they are bipushout squares: They satisfy the
universal property of pushouts up to unique isomorphism, but not up to
equality. If f does not preserve pullback squares up to strict equality, then the

1Not to be confused with the category Lcc of lcc sketches of Definition 3.6; here we mean
the category of fully realized lcc categories, i.e. fibrant lcc sketches.
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square (3.1) commutes only up to isomorphism, not equality. Thus P is not
even a functor but a bifunctor.

Usually when one considers coherence problems for type theory, the problem
lies in the fibration p, which is often not strict, and it suffices to change the
total category E while leaving the base unaltered. Our fibration p is already
strict, but it does not support substitution stable type constructors. Here the
main problem is the base category, however: The required pullback diagrams
exist only in the bicategorical sense. Thus the usual constructions [40, 61] are
not applicable.

The goal must thus be to find a category that is (bi)equivalent to Lcc in
which we can replace the bipushout squares (3.1) by 1-categorical pushouts. Our
tool of choice to that end will be model category theory (see e.g. Hirschhorn [39]).
Model categories are presentations of higher categories as ordinary 1-categories
with additional structure. Crucially, model categories allow the computation of
higher (co)limits as ordinary 1-categorical (co)limits under suitable hypotheses.
The underlying 1-category of the model category presenting a higher category
is not unique, and some presentations are more suitable for our purposes than
others. We explore three Quillen equivalent model categories, all of which
encode the same higher category of lcc categories, and show that the third one
indeed admits the structure of a model of dependent type theory.

Because of its central role in the paper, the reader is thus expected to be
familiar with some notions of model category theory. We make extensive use of
the notion of algebraically (co)fibrant object in a model category [17, 66], but
the relevant results are explained where necessary and can be taken as black
boxes for the purpose of this paper. Because of the condition on enrichment in
Theorem 3.21, all model categories considered here are proved to be model Gpd-
categories, that is, model categories enriched over the category of groupoids with
their canonical model structure. See Guillou and May [36] for background on
enriched model category theory, Anderson [4] for the canonical model category
of groupoids, and Lack [58] for the closely related model Cat-categories. While
it is more common to work with the more general simplicially enriched model
categories, the fact that the higher category of lcc categories is 2-truncated
affords us to work with simpler groupoid enrichments instead.

In Section 3.2 we construct the model category Lcc of lcc sketches, a left
Bousfield localization of an instance of Isaev’s model category structure on
marked objects [47]. Lcc sketches are to lcc categories as finite limit sketches are
to finite limit categories. Thus lcc sketches are categories with some diagrams
marked as supposed to correspond to a universal object of lcc categories, but
marked diagrams do not have to actually satisfy the universal property. The
model category structure is set up such that every lcc sketch generates an lcc
category via fibrant replacement, and lcc sketches are equivalent if and only if
they generate equivalent lcc categories.

In Section 3.3 we define the model category sLcc of strict lcc categories.
Strict lcc categories are the algebraically fibrant objects of Lcc, that is, they
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are objects of Lcc equipped with canonical lifts against trivial cofibrations
witnessing their fibrancy in Lcc. Such canonical lifts correspond to canonical
choices of universal objects in lcc categories, and the morphisms in sLcc preserve
these canonical choices not only up to isomorphism but up to equality.

Section 3.4 finally establishes the model of type theory in the opposite of
Coa sLcc, the model category of algebraically cofibrant objects in sLcc. The
objects of Coa sLcc are strict lcc categories Γ such that every (possibly non-
strict) lcc functor Γ → ∆ has a canonical strict isomorph. This additional
structure is crucial to reconcile the context extension operation, which is given
by freely adjoining a morphism to a strict lcc category, with taking slice
categories.

In Section 3.5 we show that the cwf structure on (Coa sLcc)op can be used
to rectify Seely’s original interpretation in a given lcc category C. This is done
by choosing an equivalent lcc category Γ ' C with Γ ∈ Ob (Coa sLcc), and then
Γ inherits cwf structure from the core of the slice cwf (Coa sLcc)op

/Γ.
Acknowledgements. This paper benefited significantly from input by

several members of the research community. I would like to thank the organizers
of the TYPES workshop 2019 and the HoTT conference 2019 for giving me
the opportunity to present preliminary versions of the material in this paper.
Conversations with Emily Riehl, Karol Szumiło and David White made me
aware that the constructions in this paper can be phrased in terms of model
category theory. Daniel Gratzer pointed out to me the biuniversal property
of slice categories. Valery Isaev explained to me some aspects of the model
category structure on marked objects. I would like to thank my advisor Bas
Spitters for his advice on this paper, which is part of my PhD research.

This work was supported by the Air Force Office and Scientific Research
project “Homotopy Type Theory and Probabilistic Computation”, grant number
12595060.

3.2 Lcc sketches

This section is concerned with the model category Lcc of lcc sketches. Lcc is
constructed as the left Bousfield localization of a model category of lcc-marked
objects, an instance of Isaev’s model category structure on marked objects.

Definition 3.1 (Isaev [47] Definition 2.1). Let C be a category and let i : I → C
be a diagram in C. An (i-)marked object is given by an object X in C and a
subfunctor mX of Hom(i(−), X) : Iop → Set. A map of the form k : i(K)→ X
is marked if k ∈ mX(K).

A morphism of i-marked objects is a marking-preserving morphism of
underlying objects in C, i.e. a morphism f : X → Y such that the image of
mX under postcomposition by f is contained in mY . The category of i-marked
objects is denoted by Ci.
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The forgetful functor U : Ci → C has a left and right adjoint: Its left adjoint
X 7→ X[ is given by equipping an object X of C with the minimal marking
mX[ = ∅ ⊆ Hom(i(−), X), while the right adjoint X 7→ X] equips objects with
their maximal marking mX] = Hom(i(−), X).

In our application, C = Cat is the category of (sufficiently small) categories,
and I = Ilcc contains diagrams corresponding to the shapes (e.g. a squares for
pullbacks) of lcc structure.

Definition 3.2. The subcategory Ilcc ⊆ Cat of lcc shapes is given as follows:
Its objects are the three diagrams Tm, Pb and Pi. Tm is given by the category
with a single object t and no nontrivial morphisms; it corresponds to terminal
objects. Pb is the free-standing non-commutative square

· ·

· ·;
p1

p2

f2

f1

and corresponds to pullback squares. Pi is the free-standing non-commutative
diagram

·

· ·

· ·

p1

p2

ε

g f2

f1

and corresponds to dependent products f2 = Πf1(g) and their evaluation maps
ε. The only nontrivial functor in Ilcc is the inclusion of Pb into Pi as indicated
by the variable names. It corresponds to the requirement that the domain of
the evaluation map of dependent products must be a suitable pullback.

We obtain the category Catlcc = CatIlcc of lcc-marked categories.

Now suppose that C =M is a model category. Let γ :M→ HoM be the
quotient functor to the homotopy category. A marking mX ⊆ Hom(i(−), X) of
some X ∈ ObM induces a canonical marking γ(mX) ⊆ Hom(γ(i(−)), γ(X))
on γ(X) by taking γ(mX) to be the image of mX under γ. Thus a morphism
K → X in HoM is marked if and only if it has a preimage under γ which is
marked.

Theorem 3.3 (Isaev [47] Theorem 3.3). Let M be a combinatorial model
category and let i : I → M be a diagram in M such that every object in
the image of i is cofibrant. Then the following defines the structure of a
combinatorial model category onMi:

• A morphism f : (mX , X)→ (mY , Y ) inMi is a cofibration if and only
if f : X → Y is a cofibration inM.
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• A morphism f : (mX , X) → (mY , Y ) in Mi is a weak equivalence if
and only if γ(f) : (γ(mX), γ(X))→ (γ(mY ), γ(Y )) is an isomorphism in
(HoM)γi.

A marked object (X,mX) is fibrant if and only if X is fibrant in M and the
markings of X are stable under homotopy; that is, if k ' h : i(K) → X are
homotopic maps in M and k is marked, then h is marked. The adjunctions
(−)[ a U and U a (−)] are Quillen adjunctions.

Remark 3.4. The description of weak equivalences in Theorem 3.3 does not
appear as stated in Isaev [47], but follows easily from results therein. Let
t : Id⇒ R :M→M be a fibrant replacement functor. By Isaev [47, lemma
2.5], a map f : (mX , X)→ (mY , Y ) is a weak equivalence inMi if and only if
f is a weak equivalence inM and for every diagram (of solid arrows)

i(K)

X Y

R(X) R(Y )

k

h

h′

'
tX

f

tY

R(f)

(3.2)

in which the outer square commutes up to homotopy and k is marked, there
exists a marked map h′ : i(K)→ X as indicated such that tXh′ ' h. (h′ is not
required to commute with k and f .)

Now assume that f : (mX , X)→ (mY , Y ) satisfies this condition and let us
prove that γ(f) is an isomorphism of induced marked objects in the homotopy
category. γ(f) is an isomorphism in HoM, so it suffices to show that γ(f)−1

preserves markings. By definition, every marked morphism of γ(Y ) is of the
form γ(k) : γ(i(K)) → γ(Y ) for some marked k : i(K) → Y . Because i(K)
is cofibrant and R(X) is fibrant, the map γ(tX) ◦ γ(f)−1 ◦ γ(k) : γ(i(K)) →
γ(R(X)) has a preimage h : i(K)→ R(X) under γ. As i(K) is cofibrant, R(Y )
is fibrant and γ(R(f) ◦ h) = γ(tY k), there is a homotopy h ◦R(f) ' tY k. By
assumption, there exists a marked map h′ : i(K) → X such that h′tX ' h,
thus γ(f)−1 ◦ γ(k) = γ(h′) is marked.

To prove the other direction of the equivalence, assume that γ(f) is an
isomorphism of marked objects and let h, k be as in diagram (3.2). γ(f)−1γ(k)
is marked, hence has a preimage h′ : i(K) → X under γ which is marked.
We have γ(tXh

′) = γ(h) because postcomposition of both sides with the
isomorphism γ(R(f)) gives equal results. i(K) is cofibrant and R(X) is fibrant,
thus tXh′ ' h.

Lemma 3.5. LetM and i : K →M be as in Theorem 3.3.

(1) If M is a left proper model category, then Mi is a left proper model
category.
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(2) IfM is a model Gpd-category, thenMi admits the structure of a model
Gpd-category such that (−)[ a U and U a (−)] lift to Quillen Gpd-
adjunctions.

Proof. (1). Let
X Y2

Y1 Z

g

f
p

f ′

g′

be a pushout square inMi such that f is a weak equivalence. M is left proper,
so γ(f ′) is invertible as a map in HoM.

A map k : i(K) → U(Z) is marked if and only if it factors via a marked
map k1 : i(K)→ U(Y1) or via a marked map k2 : i(K)→ U(Y2). In the first
case,

γ(f ′)−1 ◦ γ(k) = γ(g) ◦ γ(f)−1 ◦ γ(k1),

which is marked because f is a weak equivalence. Otherwise

γ(f ′)−1γ(k) = γ(k2),

which is also marked. We have shown that γ(f ′) is an isomorphism of marked
objects in HoM, thus f ′ is a weak equivalence.

(2). Let X and Y be marked objects. We define the mapping groupoid
Mi(X,Y ) as the full subgroupoid ofM(U(X), U(Y )) of marking preserving
maps.
Mi is complete and cocomplete as a 1-category. Thus if we construct

tensors G ⊗X and powers XG for all X ∈ ObM and G ∈ Ob Gpd it follows
thatMi is also complete and cocomplete as a Gpd-category. The underlying
object of powers and copowers is constructed inM, i.e. G(G ⊗X) = G ⊗G(X)
and G(XG) = G(X)G . A map k : i(K) → XG is marked if and only if the
composite

i(K) G(X)G G(X)1 = G(X)k Xv

is marked for every v ∈ ObG (which we identify with a map v : 1 → G).
Similarly, a map k : i(K)→ G ⊗X is marked if and only if it factors as

i(K) G(X) = 1⊗G(X) G ⊗G(X)
k0 v⊗id

for some object v in G and marked k0. It follows by Kelly and Kelly [57,
Theorem 4.85] from the preservation of tensors and powers by U that the
1-categorical adjunctions (−)[ a U and U a (−)[ extend to Gpd-adjunctions.

It remains to show that the tensoring Gpd×Mi →Mi is a Quillen bifunctor.
For this we need to prove that if f : G � H is a cofibration of groupoids and
g : X � Y is a cofibration of marked objects, then their pushout-product

f � g : G ⊗ Y qG⊗X H⊗X → H⊗ Y
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is a cofibration, and that it is a weak equivalence if either f or g is furthermore
a weak equivalence. The first part follows directly from the same property for
the Gpd-enrichment ofM and the fact that U preserves tensors and pushouts,
and reflects cofibrations.

In the second part we have in both cases that f � g is a weak equivalence
inM. Thus we only need to show that f � g reflects a given marked morphism
k : i(K) → H ⊗ G(Y ) in HoM. It follows from the construction of H ⊗ Y
that for any such k there exists w ∈ ObH such that k = (w⊗ id) ◦ k0 for some
marked map k0 : i(K)→ G(Y ).

Assume first that f is a trivial cofibration, i.e. an equivalence of groupoids
that is injective on objects. Then there exists v ∈ ObG such that f(v) and w
are isomorphic objects of H. k is (left) homotopic to (f(v)⊗ id) ◦ k0, which
factors via the marked map (v ⊗ id) ◦ k0 : i(K)→ G ⊗G(Y ). It follows that
γ(f � g) reflects marked morphisms.

Now assume that g is a trivial cofibration. Then γ(g) reflects marked maps,
i.e. there exists a marked map h0 : i(K)→ G(X) such that γ(g)◦γ(h0) = γ(h).
Thus the equivalence class of (w⊗ id) ◦ h0 : i(K)→ H⊗X in HoM is marked
and mapped to γ(k) under postcomposition by γ(f).

In the semantics of logic, one usually defines the notion of model of a
logical theory in two steps: First a notion of structure is defined that interprets
the theory’s signature, i.e. the function and relation symbols that occur in its
axioms. Then one defines what it means for such a structure to satisfy a formula
over the signature, and a model is a structure of the theory’s signature which
satisfies the theory’s axioms. For very well-behaved logics such as Lawvere
theories, there is a method of freely turning structures into models of the theory,
so that the category of models is a reflective subcategory of the category of
structures.

By analogy, lcc-marked categories correspond to the structures of the
signature of lcc categories. The model structure of Catlcc ensures that markings
respect the homotopy theory of Cat, in that the choice of marking is only
relevant up to isomorphism of diagrams. However, the model structure does not
encode the universal property that marked diagrams are ultimately supposed
to satisfy. To obtain the analogue of the category of models for a logical
theory, we now define a reflective subcategory of Catlcc. The technical tool
to accomplish this is a left Bousfield localization at a set S of morphisms in
Catlcc. S corresponds to the set of axioms of a logical theory. We thus need
to define S in such a way that an lcc-marked category is lcc if and only if it
has the right lifting property against the morphisms in S such that lifts are
determined uniquely up to unique isomorphism.

Cat is a combinatorial and left proper model Gpd-category with mapping
groupoids Cat(C,D) given by sets of functors and their natural isomorphisms.
Thus Catlcc has the structure of a combinatorial and left proper model Gpd-
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category by Lemma 3.5. It follows that the left Bousfield localization at any
(small) set of maps exists by Hirschhorn [39, Theorem 4.1.1].

Definition 3.6. The model category Lcc of lcc sketches is the left Bousfield
localization of the model category of lcc-marked categories at the following
morphisms.

• The morphism tm1 given by the unique map from the empty category to
the marked category with a single, Tm-marked object. tm1 corresponds
to the essentially unique existence of a terminal object.

• The morphism tm2 given by the inclusion of the category with two objects

· t

such that t is Tm-marked into

· t.

tm2 corresponds to the universal property of terminal objects.

• The morphism pb0 given by the quotient map from the free-standing
non-commutative and Pb-marked square

· ·

· ·

p2

p1 f2

f1

to the commuting square
· ·

· ·
	

p2

p1 f2

f1

(which is still marked via Pb). pb0 corresponds to the commutativity of
pullback squares.

• The morphism pb1 given by the inclusion of the cospan

·

· ·
f2

f1

with no markings into the non-commutative square

· ·

· ·

p2

p1 f2

f1

which is marked via Pb. pb1 corresponds to the essentially unique
existence of pullback squares.
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• The morphism pb2 given by the inclusion of

·

· ·

· ·

q1

q2

	

p1

p2

f2

f1

in which the lower right square is non-commutative and marked via Pb,
into the diagram

·

· ·

· ·

q1

	

q2

	

p1

p2

f2

f1

in which the indicated triangles commute. pb2 corresponds to the univer-
sal property of pullback squares.

• The morphism pi0 given by the quotient map of the non-commutative
diagram

·

· ·

· ·

p1

p2

ε

g f2

f1

in which the square made of the pi and fi is marked via Pb and the whole
diagrams is marked via Pi, to

·

· ·

· ·

p1

	

p2

ε

g f2

f1

in which the indicated triangle commutes. pi0 corresponds to the require-
ment that the evaluation map ε of the dependent product f2 = Πf1(g) is
a morphism in the slice category over cod g.

• The morphism pi1 given by the inclusion of a composable pair of mor-
phisms

·

· ·
g

f1
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into the non-commutative diagram

·

· ·

· ·

p1

p2

ε

g f2

f1

which is marked via Pi (and hence the outer square is marked via Pb).
pi1 corresponds to the essentially unique existence of dependent products
f2 = Πf1(g) and their evaluation maps ε.

• The morphism pi2 given by the inclusion of the diagram

·

·

· · ·

· ·

p′1

p′2

e

p1

p2

ε

g f2
f ′2f1

in which the square given by the fi and pi is marked via Pb, the subdia-
gram given by the fi, pi, g and ε is marked via Pi, the square given by
f1, f

′
2 and the p′i is marked via Pb, and e ◦ g = p′1, into the diagram

·

·

· · ·

· ·

u

p′1

p′2

e

p1

p2

ε

g f2
f ′2f1

in which u commutes with the pi and p′i, and e = ε ◦ u. pi2 corresponds
to the universal property of the dependent product f2 = Πf1(g).

Proposition 3.7. The model category Lcc is a model for the (2, 1)-category of
lcc categories and lcc functors:

(1) An object C ∈ Lcc is fibrant if and only if its underlying category is lcc
and
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• a map i(Tm)→ U(C) is marked if and only if its image is a terminal
object;

• a map i(Pb)→ U(C) is marked if and only if its image is a pullback
square; and

• a map i(Pi)→ U(C) is marked if and only if its image is (isomorphic
to) the diagram of the evaluation map of a dependent product.

(2) The homotopy category of Lcc is equivalent to the category of lcc categories
and isomorphism classes of lcc functors.

(3) The homotopy function complexes of fibrant lcc sketches are given by the
groupoids of lcc functors and their natural isomorphisms.

Proof. Homotopy function complexes of maps from cofibrant to fibrant objects
in a model Gpd-category can be computed as nerves of the groupoid enrichment.
Thus (2) and (3) follow from (1) and Lemma 3.5.

By Hirschhorn [39, Theorem 4.1.1], the fibrant objects of the left Bousfield
localization Lcc = S−1Catlcc at the set S of morphisms from Definition 3.6 are
precisely the fibrant lcc-marked categories C which are f -local for all f ∈ S.
The verification of the equivalence asserted in (1) can thus be split up into
three parts corresponding to terminal objects, pullback squares and dependent
products. As the three proofs are very similar, we give only the proof for
pullbacks. For this we must show that if C is a Pb-marked category, then
marked maps i(Pb)→ C are stable under isomorphisms and C is pbi-local for
i = 0, 1, 2 if and only if the underlying category U(C) has all pullbacks and
maps i(Pb)→ U(C) are marked if and only if their images are pullbacks.

Let M be a model Gpd-category. The homotopy function complexes of
maps from cofibrant to fibrant objects in M can be computed as nerves of
mapping groupoids. The nerve functor N : Gpd→ sSet preserves and reflects
trivial fibrations. Thus if f : A→ B is a morphism of cofibrant objects A,B,
then a fibrant object X is f -local if and only if

M(f,X) :M(B,X)→M(A,X)

is a trivial fibration of groupoids, i.e. an equivalence that is surjective on
objects.

Unfolding this we obtain the following characterization of pbi-locality for a
fibrant Pb-marked category:

• C is pb0-local if and only if all Pb-marked squares commute.

• C is pb1-local if and only if every cospan can be completed to a Pb-
marked square, and isomorphisms of cospans can be lifted uniquely to
isomorphisms of Pb-marked squares completing them.
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• C is pb2-local if and only if every commutative square completing the lower
cospan of a Pb-marked square factors via the Pb-marked square, and
every factorization is compatible with natural isomorphisms of diagrams.
By compatibility with the identity isomorphism, the factorization is
unique.

If these conditions are satisfied, then every cospan in C can be completed to
a pullback square which is Pb-marked, and Pb-marked squares are pullbacks.
By fibrancy of C, it follows that precisely the pullback squares are Pb-marked.

Conversely, if we take as Pb-marked squares the pullbacks in a category C
with all pullbacks, then Pb-marked squares will be stable under isomorphism,
and, by the characterization above, C will be pbi-local for all i.

3.3 Strict lcc categories

A naive interpretation of type theory in the fibrant objects of Lcc as outlined
in the introduction suffers from very similar issues as Seely’s original version:
Type theoretic structure is preserved up to equality by substitution, but lcc
functors preserve the corresponding objects with universal properties only up
to isomorphism.

In this section, we explore an alternative model categorical presentation
of the higher category of lcc categories. Our goal is to rectify the deficiency
that lcc functors do not preserve lcc structure up to equality. Indeed, lcc
structure on fibrant lcc sketches is induced by a right lifting property, so there
is no preferred choice of lcc structure on fibrant lcc sketches. We can thus not
even state the required preservation up to equality. To be able to speak of
distinguished choice of lcc structure, we employ the following technical device.

Definition 3.8 (Nikolaus [66]). Let M be a combinatorial model category
and let J be a set of trivial cofibrations such that objects with the right lifting
property against J are fibrant. An algebraically fibrant object ofM (with respect
to J) consists of an object G(X) ∈ ObM equipped with a choice of lifts against
all morphisms j ∈ J . Thus X comes with maps `X(j, a) : B → G(X) for all
j : A→ B in J and a : A→ G(X) inM such that

A G(X)

B

j

a

`X(j,a)

commutes. A morphism of algebraically fibrant objects f : X → Y is a
morphism f : G(X) → G(Y ) inM that preserves the choices of lifts, in the
sense that f ◦ `X(j, a) = `Y (j, fa) for all j : A → B in J and a : A → G(X).
The category of algebraically fibrant objects is denoted by AlgM, and the
evident forgetful functor AlgM→M by G.
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Proposition 3.9. Denote by I ∈ Ob Gpd the free-standing isomorphism with
objects 0 and 1 and let K ∈ Ob Ilcc. Let AK , BK be the lcc-marked object given
by U(AK) = U(BK) = I ×K with K ∼= {0} ×K ↪→ I ×K the only marking
for AK and K ∼= {ε}×K ↪→ I ×K, ε = 0, 1 the markings for BK , and denote
by jK : AK → BK the obvious inclusion.

Then jK is a trivial cofibration in Catlcc, and an object of Catlcc is fibrant
if and only if it has the right lifting property against jK for all K.

Proof. The maps jK are injective on objects and hence cofibrations, and they
reflect markings up to isomorphism, hence are also weak equivalences. A map
a : AK → C corresponds to an isomorphism of maps a0, a1 : i(K)→ C with a0

marked, and a can be lifted to BK if and only if a1 is also marked. Thus C has
the right lifting property against the jK if and only if its markings are stable
under isomorphism, which is the case if and only if C is fibrant.

Proposition 3.10. An object of Lcc is fibrant if and only if it has the right
lifting property against all of the following morphisms, all of which are trivial
cofibrations in Lcc:

(1) The maps jK of Proposition 3.9.

(2) The morphisms of Definition 3.6.

(3) The maps 〈id, id〉 : B qA B → B, where A → B is one of tm2, pb2 or
pi2.

Proof. All three types of maps are injective on objects and hence cofibrations
in Catlcc and Lcc. By Proposition 3.9, the maps jK are trivial cofibrations of
lcc-marked categories and hence also trivial cofibrations in Lcc.

By Proposition 3.7, the fibrant objects of Lcc are precisely the lcc categories.
If C is an lcc category and f : X → Y is a morphism of type (2) or (3), then

Lcc(f, C) : Lcc(Y, C)→ Lcc(X, C)

is an equivalence of groupoids and hence induces a bijection of isomorphism
classes. It follows by the Yoneda lemma that γ(f) is an isomorphism in Ho Lcc,
so f is a weak equivalence in Lcc.

On the other hand, let C be a fibrant lcc-marked category with the right
lifting property against morphisms of type (2) and the morphisms of type (3).
The right lifting property against pb0,pb1 and pb2 implies that Pb-marked
diagrams commute, that every cospan can be completed to a Pb-marked square,
and that every square over a cospan factors via every Pb-marked square over
the cospan. Uniqueness of factorizations follows from the right lifting property
against the map of type (3) corresponding to pullbacks. Thus C has pullbacks,
and the argument for terminal objects and dependent products is similar.
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Definition 3.11. A strict lcc category is an algebraically fibrant object of Lcc
with respect to the set J consisting of the morphisms of types (1) – (3) of
Proposition 3.10. The category of strict lcc categories is denoted by sLcc.

Remark 3.12. The objects in the image of the forgetful functor G : sLcc→ Lcc
are the fibrant lcc sketches, i.e. lcc categories. To endow an lcc category with
the structure of a strict lcc category, we need to choose canonical lifts `(j,−)
against the morphisms j ∈ J . Because the lifts against all other morphisms
are uniquely determined, only the choices for tm1, pb1 and pi1 are relevant for
this. Thus a strict lcc category is an lcc category with assigned terminal object,
pullback squares and dependent products (including the evaluation maps of
dependent products). A strict lcc functor is then an lcc functor that preserves
these canonical choices of universal objects not just up to isomorphism but up
to equality.

The slice category C/σ over an object σ of an lcc category C is lcc again. A
morphism s : σ → τ in C induces by pullback an lcc functor s∗ : C/τ → C/σ, and
there exist functors Πs,Σs : U(C/τ )→ U(C/σ) and adjunctions Σs a U(s∗) a Πs.
These data depend on choices of pullback squares and dependent products, and
hence they are preserved by lcc functors only up to isomorphism.

For strict lcc categories Γ, however, these functors can be constructed using
canonical lcc structure, i.e. using the lifts `(j,−) for various j ∈ J , and this
choice is preserved by strict lcc functors.

Proposition 3.13. Let Γ be a strict lcc category, and let σ ∈ Ob Γ. Then there
is a strict lcc category Γ/σ whose underlying category is the slice U(G(Γ))/σ.

If s : σ → τ is a morphism in Γ, then there is a canonical choice of pullback
functor s∗ : G(Γ/τ ) → G(Γ/σ) which is lcc (but not necessarily strict) and
canonical left and right adjoints

Σs a U(s∗) a Πs.

These data are natural in Γ. Thus if f : Γ → ∆ is strict lcc, then the
evident functor f/σ : U(G(Γ/σ))→ U(G(∆/f(σ))) is strict lcc, and the following



80 CHAPTER 3. THE 1-CATEGORICAL MULTIVERSE MODEL

squares in Lcc respectively Cat commute:

Γ/σ ∆/f(σ)

Γ/τ ∆/f(τ)

f/σ

f/τ

s∗ f(s)∗

Γ/σ ∆/f(σ)

Γ/τ ∆/f(τ)

f/σ

Σs Σf(s)

f/τ

Γ/σ ∆/f(σ)

Γ/τ ∆/f(τ)

f/σ

Πs Πf(s)

f/τ

(Here application of G and U has been omitted; the left square is valued in Lcc,
and the two right squares are valued in Cat.) f/σ and f/τ commute with taking
transposes along the involved adjunctions.

Proof. We take as canonical terminal object of Γ/σ the identity morphism idσ
on σ. Canonical pullbacks in Γ/σ are computed as canonical pullbacks of the
underlying diagram in Γ, and similarly for dependent products.

The canonical pullback and dependent product functors σ∗,Πs are defined
using canonical pullbacks and dependent products, and dependent sum functors
Σs are computed by composition with s. Units and counits of the adjunctions
are given by the evaluation maps of canonical dependent products and the
projections of canonical pullbacks.

Because these data are defined in terms of canonical lcc structure on Γ,
they are preserved by strict lcc functors.

The context morphisms in our categories with families (cwfs) [27] will
usually be defined as functors of categories in the opposite directions. Cwfs are
categories equipped with contravariant functors to Fam, the category of families
of sets. To avoid having to dualize twice, we thus introduce the following notion.

Definition 3.14. A covariant cwf is a category C equipped with a (covariant)
functor (Ty,Tm) : C → Fam.

The intuition for a context morphism f : Γ→ ∆ in a cwf is an assignment
of terms in Γ to the variables occurring in ∆. Dually, a morphism f : ∆→ Γ
in a covariant cwf should thus be thought of as a mapping of the variables
in ∆ to terms in context Γ, or more conceptually as an interpretation of the
mathematics internal to ∆ into the mathematics internal to Γ.

Apart from our use of covariant cwfs, we adhere to standard terminology
with the obvious dualization. For example, an empty context in a covariant
cwf is an initial (instead of terminal) object in the underlying category.
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To distinguish type and term formers in (covariant) cwfs from the corre-
sponding categorical structure, the type theoretic notions are typeset in bold
where confusion is possible. Thus Πσ τ denotes a dependent product type
whereas Πσ(τ) denotes application of a dependent product functor Πσ : C/σ → C
to an object τ ∈ Ob C/σ.

Definition 3.15. The covariant cwf structure on sLcc is given by Ty(Γ) = Ob Γ
and Tm(Γ, σ) = HomΓ(1, σ), where 1 denotes the canonical terminal object of
Γ.

Proposition 3.16. The covariant cwf sLcc has an empty context and context
extensions, and it supports finite product and extensional equality types.

Proof. It follows from Theorem 3.18 below that sLcc is cocomplete and that
G : sLcc→ Lcc has a left adjoint F . In particular, there exists an initial strict
lcc category, i.e. an empty context in sLcc.

Let Γ ` σ. The context extension Γ.σ is constructed as pushout

F ({t, σ}) F ({v : t→ σ})

Γ Γ.σ
p

where {t, σ} denotes a minimally marked lcc sketch with two objects and
{v : t → σ} is the minimally marked free-standing arrow. The vertical
morphism on the left is induced by mapping t to 1 (the canonical terminal
object of Γ) and σ to σ, and the top morphism is the evident inclusion. The
variable Γ.σ ` v : p(σ) is given by the image of v in Γ.σ.

Unit types Γ ` 1 are given by the canonical terminal objects of strict lcc
categories Γ. Binary product types Γ ` σ × τ are given by canonical pullbacks
σ ×1 τ over the canonical terminal object 1 in Γ. Finally, equality types
Γ ` Eqs t are constructed as canonical pullbacks

Eq s t 1

1 σ,

t

s

in Γ, i.e. as equalizers of s and t.
Because these type constructors (and evident term formers) are defined

from canonical lcc structure, they are stable under substitution.

Remark 3.17. Unfortunately, sLcc does not support dependent product or
dependent sum types in a similarly obvious way. The introduction rule for
dependent types is

Γ ` σ Γ.σ ` τ
Γ ` Πστ

.
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To interpret it, we would like to apply the dependent product functor Πσ :
U(G(Γ))/σ → U(G(Γ)) to τ .

We thus need a functor U(G(Γ.σ)) → U(G(Γ/σ)) to obtain an object of
the slice category, and the construction of such a functor appears to be not
generally possible. Note that the most natural strategy for constructing this
functor using the universal property of Γ.σ does not work: For this we would
note that the pullback functor σ∗ : G(Γ)→ G(Γ/σ) is lcc, and that the diagonal
d : σ → σ × σ is a morphism 1 → σ∗(σ)) in Γ/σ, and then try to obtain
〈σ∗, d〉 : Γ.σ → Γ/σ. The flaw in this argument is that σ∗, while lcc, is not
strict, and the universal property of Γ.σ only applies to strict lcc functors. A
solution to this problem is presented in Section 3.4.

We conclude the section with a justification for why we have not gone astray
so far: The initial claim was that our interpretation of type theory would be
valued in the category of lcc categories, but sLcc is neither 1-categorically nor
bicategorically equivalent to the category Lccf of fibrant lcc sketches. Indeed,
not every non-strict lcc functor of strict lcc categories is isomorphic to a strict
lcc functor. Nevertheless, sLcc has model category structure that presents the
same higher category of lcc categories by the following theorem:

Theorem 3.18 (Nikolaus [66] Proposition 2.4, Bourke [14] Theorem 19). Let
M be a combinatorial model category, and let J be a set of trivial cofibrations
such that objects with the right lifting property against J are fibrant. Then
G : AlgM → M is monadic with left adjoint F , and AlgM is a locally
presentable category. The model structure of M can be transferred along
the adjunction F a G to AlgM, endowing AlgM with the structure of a
combinatorial model category. F a G is a Quillen equivalence, and the unit
X → G(F (X)) is a trivial cofibration for all X ∈M.

Theorem 3.18 appears in Nikolaus [66] with the additional assumption that
all cofibrations inM are monomorphisms. This assumption is lifted in Bourke
[14], but there J is a set of generating trivial cofibrations, which is a slightly
stronger condition than the one stated in the theorem. However, the proof in
Bourke [14] works without change in the more general setting.

That the model structure of AlgM is obtained by transfer from that ofM
means that G reflects fibrations and weak equivalences.

Lemma 3.19. LetM and J be as in Theorem 3.18, and suppose furthermore
that M is a model Gpd-category. Then AlgM has the structure of a model
Gpd-category, and the adjunction F a G lifts to a Quillen Gpd-adjunction.

Proof. Let X and Y be algebraically fibrant objects. We define the mapping
groupoid (AlgM)(X,Y ) to be the full subgroupoid ofM(G(X), G(Y )) whose
objects are the maps of algebraically fibrant objects X → Y .

Because Gpd is generated under colimits by the free-standing isomorphism
I, it will follow from the existence of powers XI that AlgM is complete
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as a Gpd-category. As we will later show that G is a right adjoint, the
powers in AlgM must be constructed such that they commute with G, i.e.
G(XI) = G(X)I .

Let j : A → B be in J and let a : A → G(X)I . The canonical lift
`(j, a) : B → G(X)I is constructed as follows: a corresponds to a map
ā : I →M(A,G(X)), i.e. an isomorpism of maps A→ G(X). Its source and
target are morphisms ā0, ā1 : A→ G(X), for which we obtain canonical lifts
`(j, āi) : B → G(X) using the canonical lifts of X. Because G(X) is fibrant and
j is a trivial cofibration, the mapM(j,G(X)) :M(B,G(X))→M(A,G(X))
is a trivial fibration and in particular an equivalence. It follows that ā can
be lifted uniquely to an isomorphism of `(j, ā0) with `(j, ā1), and we take
`(j, a) : B → G(X)I as this isomorphism’s transpose.

From uniqueness of the lift defining `(j, a), it follows that a map G(Y )→
G(X)I preserves canonical lifts if and only if the two maps

G(Y ) G(X)I G(X)
G(X){i}

given by evaluation at the endpoints i = 0, 1 of the isomorphism I preserve
canonical lifts. Thus the canonical isomorphism

Gpd(I,M(G(Y ), G(X))) ∼=M(G(Y ), G(X)I)

restricts to an isomorphism

Gpd(I, (AlgM)(Y,X)) ∼= (AlgM)(Y,XI).

It follows by Kelly and Kelly [57, theorem 4.85] and the preservation of
powers by G that the 1-categorical adjunction F a G is groupoid enriched. It
is proved in Nikolaus [66] that G, when considered as a functor of ordinary
categories, is monadic using Beck’s monadicity theorem. The only additional
assumption for the enriched version of Beck’s theorem [26, theorem II.2.1]
we have to check is that the coequalizer of a G-split pair of morphisms as
constructed in Nikolaus [66] is a colimit also in the enriched sense. This follows
immediately from the fact that G is locally full and faithful. G is Gpd-monadic
and accessible, so AlgM is Gpd-cocomplete by Blackwell et al. [12, theorem
3.8].

It remains to show that AlgM is groupoid enriched also in the model
categorical sense. For this it suffices to note that G preserves (weighted) limits
and that G preserves and reflects fibrations and weak equivalences, so that the
map

XH → XG ×Y G Y H

induced by a cofibration of groupoids f : G � H and a fibration g : X → Y
in AlgM is a fibration and a weak equivalence if either f or g is a weak
equivalence.
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Remark 3.20. Lack [58] defines model category structure on T -Algs, the category
of strict algebras and their strict morphisms for a 2-monad T on a model Gpd-
category. If we choose for T the monad on Cat assigning to every category the
free lcc category generated by it, then T -Algs is Gpd-equivalent to sLcc, so it
is natural ask whether their model category structures agree.

The model category structure on T -Algs is defined by transfer from Cat,
i.e. such that the forgetful functor T -Algs → Cat reflects fibrations and weak
equivalences. The same is true for sLcc→ Lcc, and this functor is valued in
the fibrant objects of Lcc. The restriction of the functor Lcc→ Cat to fibrant
objects reflects weak equivalences and trivial fibrations because equivalences
of categories preserve and reflect universal objects that exist in domain and
codomain. Thus sLcc and T -Algs have the same sets of weak equivalences and
trivial fibrations, hence their model category structures coincide.

3.4 Algebraically cofibrant strict lcc categories

As noted in Remark 3.17, to interpret dependent sum and dependent product
types in sLcc, we would need to relate context extensions Γ.σ to slice categories
Γ/σ. In this section we discuss how this problem can be circumvented by
considering yet another Quillen equivalent model category: The category of
algebraically cofibrant strict lcc categories.

The slice category C/x of an lcc category C is bifreely generated by (any
choice of) the pullback functor σ∗ : C → C/x and the diagonal d : x→ x× x,
viewed as a morphism 1→ x∗(x) in C/x: Given a pair of lcc functor f : C → D
and morphism s : 1 → f(x) in D, there is an lcc functor g : C/x → D
that commutes with f and x∗ up to a natural isomorphism under which g(d)
corresponds to s, and every other lcc functor with this property is uniquely
isomorphic to g.

Phrased in terms of model category theory, this biuniversal property
amounts to asserting that the square

{t, x} {d : t→ x}

C C/x
x∗

is a homotopy pushout square in Lcc. Here {t, x} = {t, x}[ denotes the discrete
category with two objects and no markings, from which {d : t→ x} is obtained
by adjoining a single morphism t→ x. The left vertical map {t, x} → C maps
t to some terminal object and x to x, and the right vertical map maps d to the
diagonal x→ x∗(x) in C/x.
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Recall from Proposition 3.16 that a context extension Γ.σ in sLcc is defined
by the 1-categorical pushout square

F ({t, σ}) F ({v : t→ σ})

Γ Γ.σ.
p

(3.3)

Because F a G is a Quillen equivalence, we should thus expect to find weak
equivalences relating Γ/σ to Γ.σ if the pushout (3.3) is also a homotopy pushout.

By Lurie [62, Proposition A.2.4.4], this is the case if Γ, F ({t, σ}) and F ({v :
t, σ}) are cofibrant, and the map F ({t, σ}) → F ({v : t, σ}) is a cofibration.
The cofibrations of Lcc are the maps which are injective on objects. It follows
that {t, σ} and {v : t→ σ} are cofibrant lcc sketches, and that the inclusion of
the former into the latter is a cofibration. F is a left Quillen functor and hence
preserves cofibrations. Thus the pushout (3.3) is a homotopy pushout if Γ is
cofibrant.

Note that components of the counit ε : FG ⇒ Id : sLcc → sLcc are
cofibrant replacements: Every lcc sketch is cofibrant in Lcc, every strict lcc
category is fibrant in sLcc, and F a G is a Quillen equivalence. It follows that
a strict lcc category Γ is cofibrant if and only if the counit εΓ is a retraction,
say with section λ : Γ→ F (G(Γ)).

And indeed, this section can be used to strictify the pullback functor. We
have σ∗ : G(Γ)→ G(Γ/σ), which induces a strict lcc functor σ∗ : F (G(Γ))→
Γ/σ. Now let

(σ∗)s : Γ
λ−→ F (G(Γ))

σ∗−→ Γ/σ,

which is naturally isomorphic to σ∗. Adjusting the domain and codomain of
the diagonal d suitably to match (σ∗)s, we thus obtain the desired comparison
functor 〈λ(σ∗)s, d〉 : Γ.σ → Γ/σ.

At first we might thus attempt to restrict the category of contexts to the
cofibrant strict lcc categories Γ, for which sections λ : Γ → F (G(Γ)) exist.
Indeed, cofibrant objects are stable under pushouts along cofibrations, so the
context extension Γ.σ will be cofibrant again if Γ is cofibrant. The dependent
product type Πσ τ would be defined by application of

Γ.σ Γ/σ Γ
Πσ

to τ . Unfortunately, the definition of the comparison functor Γ.σ → Γ/σ
required a choice of section λ : Γ→ F (G(Γ)), and this choice will not generally
be compatible with strict lcc functors Γ→ ∆. The dependent products defined
as above will thus not be stable under substitution.

To solve this issue, we make the section λ part of the structure. Similarly
to how strict lcc categories have associated structure corresponding to their
fibrancy in lcc, we make the section λ witnessing the cofibrancy of strict lcc



86 CHAPTER 3. THE 1-CATEGORICAL MULTIVERSE MODEL

categories part of the data, and require morphisms to preserve it. We thus
consider algebraically cofibrant objects, which, dually to algebraically fibrant
objects, are defined as coalgebras for a cofibrant replacement comonad. As in
the case of algebraically fibrant objects, we are justified in doing so because we
obtain an equivalent model category:

Theorem 3.21 (Ching and Riehl [17] Lemmas 1.2 and 1.3, Theorems 1.4
and 2.5). LetM be a combinatorial and model Gpd-category. Then there are
arbitrarily large cardinals λ such that

(1) M is locally λ-presentable;

(2) M is cofibrantly generated with a set of generating cofibrations for which
domains and codomains are λ-presentable objects;

(3) an object X ∈ ObM is λ-presentable if and only if the functorM(X,−) :
M→ Gpd, given by the groupoid enrichment ofM, preserves λ-filtered
colimits.

Let λ be any such cardinal. Then there is a cofibrant replacement Gpd-
comonad C : M → M that preserves λ-filtered colimits. Let C be any such
comonad and denote its category of coalgebras by CoaM.

Then the forgetful functor U : CoaM→M has a left adjoint V . CoaM
is a complete and cocomplete Gpd-category, and V a U is a Gpd-adjunction.
The model category structure of M can be transferred along V a U , making
CoaM a model Gpd-category. V a U is a Quillen equivalence.

ForM = sLcc, the first infinite cardinal ω satisfies the three conditions of
Theorem 3.21, and C = FG is a suitable cofibrant replacement comonad.

Definition 3.22. The covariant cwf structure on Coa sLcc is defined as the
composite

Coa sLcc→ sLcc→ Fam

in terms of the covariant cwf structure on sLcc.

We denote by η : Id ⇒ GF : Lcc → Lcc the unit and by ε : FG ⇒ Id :
sLcc→ sLcc the counit of the adjunction F a G.

Lemma 3.23. Let λ : Γ → F (G(Γ)) be an FG-coalgebra. Then there is a
canonical natural isomorphism φ : G(λ) ∼= ηG(Γ) : G(Γ)→ G(F (G(Γ))) of lcc
functors which is compatible with morphisms of FG-coalgebras.

Proof. It suffices to construct a natural isomorphism

ψ : id ∼= ηG(Γ) ◦G(εΓ)
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of lcc endofunctors on G(F (G(Γ))) for every strict lcc category Γ, because then

ψ ◦G(λ) : G(λ) ∼= ηG(Γ) ◦G(εΓλ) = ηG(Γ)

for every coalgebra λ : Γ→ F (G(Γ)).
ηG(Γ) is a trivial cofibration, so the map

− ◦ ηG(Γ) : Lcc(G(F (G(Γ))), G(F (G(Γ))))→ Lcc(G(Γ), G(F (G(Γ)))) (3.4)

is a trivial fibration of groupoids. By one of the triangle identities of units
and counits, we have ηG(Γ) ◦ G(εΓ) ◦ ηG(Γ) = ηG(Γ). Thus both idG(Γ) and
ηG(Γ) ◦G(εΓ) are sent to ηG(Γ) under the surjective equivalence (3.4), and so
we can lift the identity natural isomorphism on ηG(Γ) to an isomorphism ψ as
above. Since the lift is unique, it is preserved under strict lcc functors in Γ.

Proposition 3.24. The covariant cwf Coa sLcc has an empty context and
context extensions, and the forgetful functor Coa sLcc→ sLcc preserves both.

Proof. The model category Coa sLcc has an initial object, i.e. an empty context.
Its underlying strict lcc category Γ is the initial strict lcc category, and the
structure map λ : Γ → F (G(Γ)) is the unique strict lcc functor with this
signature.

Now let λ : Γ → F (G(Γ)) be an FG-coalgebra and Γ ` σ be a type. We
must construct coalgebra structure λ.σ : Γ.σ → F (G(Γ.σ)) on the context
extension in sLcc such that

Γ Γ.σ

F (G(Γ)) F (G(Γ.σ))

p

λ λ.σ

F (G(p))

commutes, and show that the strict lcc functor 〈f, w〉 : Γ.σ → ∆ induced by a
coalgebra morphism f : (Γ, λ)→ (∆, λ′) and a term ∆ ` w : f(σ) is a coalgebra
morphism.

Let v : 1→ p(σ) be the variable term of the context extension of Γ by σ.
Then ηΓ.σ(v) is a morphism

ηΓ.σ(1)→ ηΓ.σ(p(σ)) = F (G(p))(ηΓ(σ))

in F (G(Γ.σ)). ηΓ.σ(1) is a terminal object and hence uniquely isomorphic to the
canonical terminal object 1 of F (G(Γ.σ)), and F (G(p))(ηΓ(σ)) is isomorphic
to F (G(p))(λ(σ)) via a component of F (G(p)) ◦ φ, where φ is the natural
isomorphism constructed in Lemma 3.23. We thus obtain a term Γ.σ ` v′ :
F (G(p))(λ(σ)) and can define

λ.σ = 〈F (G(p)) ◦ λ, v′〉
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by the universal property of Γ.σ. λ.σ is compatible with p and λ by construction.
Now let f : (Γ, λ)→ (∆, λ′) be a coalgebra morphism and let ∆ ` w : f(σ).

We need to show that

Γ.σ ∆

F (G(Γ.σ)) F (G(∆))

〈f,w〉

λ.σ λ′

F (G(〈f,w〉))

commutes. This follows from the universal property of Γ.σ: The two maps
Γ.σ → F (G(∆)) agree after precomposing p : Γ→ Γ.σ because by assumption
f is a coalgebra morphism, and they both map v to the term F (G(∆)) ` w′ :
λ′(f(σ)) obtained from w similarly to v′ from v because the isomorphism φ
constructed in Lemma 3.23 is compatible with coalgebra morphisms.

For C a Gpd-category and x ∈ Ob C, we denote by Cx/ the higher coslice
Gpd-category of objects under x. Its objects are morphisms out of x, its
morphisms are triangles

x

· ·

y0 y1φ∼=
f

in C which commute up to specified isomorphism φ, and its 2-cells (f0, φ0) ∼=
(f1, φ1) are 2-cells ψ : f0

∼= f1 in C such that φ1(ψ ◦ y0) = φ0.

Definition 3.25. Let C be an lcc category and x ∈ Ob C. A weak context
extension of C by x consists of an lcc functor f : C → D and a morphism
v : t→ f(x) with t a terminal object in D such that the following biuniversal
property holds:

For every lcc category E , lcc functor g : C → E and morphism w : u→ g(x)
in E with u terminal, the full subgroupoid of LccC/(f, g) given by pairs of lcc
functor h : D → E and natural isomorphism φ : hf ∼= g such that the square

h(t) h(f(x))

u g(x)

h(v)

φx

w

in D commutes is contractible (i.e. equivalent to the terminal groupoid).

Remark 3.26. Note that the definition entails that mapping groupoids of lcc
functors D → E under C with D a weak context extension are equivalent
to discrete groupoids. Lcc functors h0, h1 : D → E under C are (necessarily
uniquely) isomorphic under C if and only if they correspond to the same
morphism w : u→ g(x) in E .
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Lemma 3.27. Let λ : Γ→ F (G(Γ)) be an FG-coalgebra and let ∆ be a strict
lcc category. Then the full and faithful inclusion of groupoids

sLcc(Γ,∆) ⊆ Lcc(G(Γ), G(∆)) (3.5)

admits a canonical retraction f 7→ fs. There is a natural isomorphism ζf :
G(fs) ∼= f , exhibiting the retract (3.5) as an equivalence of groupoids. The
retraction f 7→ fs and natural isomorphism ζf is Gpd-natural in (Γ, λ) and ∆.

Proof. Let f : G(Γ) → G(∆). The transpose of f is a strict lcc functor
f̄ : F (G(Γ)) → ∆ such that G(f̄)η = f . We set fs = f̄λ and ζf = G(f̄)φ
for φ : G(λ) ∼= η as in Lemma 3.23. If f = G(g) already arises from a strict
lcc functor g : Γ → ∆, then ḡ = gε and hence ḡλ = g. The action of the
retraction f 7→ fs on natural isomorphisms f0

∼= f1 is defined analogously from
the Gpd-enrichment of F a G.

Lemma 3.28. Let (Γ, λ) be an FG-coalgebra. Then G(p) : G(Γ) → G(Γ.σ)
and v : 1→ p(σ) form a weak context extension of G(Γ) by σ.

Proof. Let f : G(Γ) → E be an lcc functor and w : t → f(σ) be a morphism
with terminal domain in E . Let ∆ be a strict lcc category such that G(∆) = E .
Then by Lemma 3.27 there is an isomorphism ζf : G(fs) ∼= f for some strict
lcc functor fs : Γ→ ∆. Set g = 〈fs, ws〉, where ws is the unique morphism in
G(∆) such that

1 fs(σ)

t f(σ)

ws

ζfσ

w

commutes. (Both vertical arrows are isomorphisms.) Now with g = 〈fs, ws〉 :
Γ.σ → ∆ we have ζf : G(g) ◦G(p) ∼= f .

Let h : G(Γ.σ)→ E and φ : h ◦G(p) ∼= f be any other lcc functor over G(Γ)
such that

h(1) h(σ)

t f(σ)

h(v)

φσ

w

commutes. We need to show that h and G(g) are uniquely isomorphic under
G(Γ). Lemma 3.27 reduces this to the unique existence of an extension of the
isomorphism gp ∼= hsp : Γ→ ∆ defined as composite

G(gp) ∼= f ∼= h ◦G(p) ∼= G((h ◦G(p))s) = G(hsp)
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to an isomorphism g ∼= hs : Γ.σ → ∆ under Γ. This follows from the construc-
tion of Γ.σ as pushout

F ({t, σ}) F ({v : t→ σ})

Γ Γ.σ,
p

and its universal property on 2-cells.

Lemma 3.29. Let x be an object of an lcc category C, and let x∗ : C → C/x
be any choice of pullback functor. Denote by d = 〈idx, idx〉 : idx → x∗(x) the
diagonal morphism in C/x. Then x∗ and d form a weak context extension of C
by x.

Proof. Let E be an lcc category, f : C → E be an lcc functor and w : t→ f(σ) be
a morphism in E with t terminal. We define the induced lcc functor g : C/x → E
as composition

C/x E/f(x) E
f/x w∗

where w∗ : E/f(x) → E/t
∼−→ E is given by a choice of pullback functor.

Let y ∈ Ob C. We denote the composite f(x)→ t
w−→ f(x) by w′. Then the

two squares

g(x∗(y)) f(x× y)

t f(x)

f(pr1)

w

f(y) f(x× y)

t f(x)

〈w,id〉

f(pr1)

w

are both pullbacks over the same cospan. Here pr1 = x∗(y) denotes the first
projection of the product defining the pullback functor x∗, and x × y is the
projection’s domain. (These should not be confused with canonical products
in strict lcc categories; C and D are only lcc categories.) f preserves pullbacks,
so f(x× y) is a product of f(x) with f(y). We obtain natural isomorphisms
φy : g(x∗(y)) ∼= f(y) relating the two pullbacks for all y.

The diagram

t f(x) t

f(x) f(x× x) f(x)

w

w 〈w′,id〉 w

f(d) pr1

commutes, and in particular the left square commutes. It follows that φ is
compatible with d and w.
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g and φ are unique up to unique isomorphism because for every morphism
k : y → x in C, i.e. object of C/x, the square

k x∗(y)

idx x∗(x)

〈k,id〉

k x∗(k)

d

is a pullback square in C/x.

Lemma 3.30. Let λ : Γ→ F (G(Γ)) be an FG-coalgebra and let Γ ` σ be a type.
Then G(p) : G(Γ)→ G(Γ.σ) and σ∗ : G(Γ)→ G(Γ/σ) are equivalent objects of
the coslice category LccG(Γ)/. The equivalence a : G(Γ.σ)� G(Γ/σ) : b can be
constructed naturally in (Γ, λ) and σ, in the sense that coalgebra morphisms in
(Γ, λ) preserving σ induce natural transformations of diagrams

G(Γ.σ)I G(Γ.σ) G(Γ/σ) G(Γ/σ)I .
a

b
(3.6)

Proof. It follows immediately from Lemmas 3.28 and 3.29 that G(Γ.σ) and
G(Γ/σ) are equivalent under G(Γ). However, a priori the corresponding di-
agrams (3.6) can only be assumed to vary pseudonaturally in (Γ, λ) and σ,
meaning that for example the square

G(Γ.σ) G(Γ/σ)

G(∆.f(σ)) G(∆/f(σ))
(3.7)

induced by a coalgebra morphism f : (Γ, λ)→ (∆, µ) would only commute up
to isomorphism.

The issue is that Definition 3.25 only requires that certain mapping groupoids
are contractible to a point, but the choice of point is not uniquely determined.
To obtain a square (3.7) that commutes up to equality, we have to explicitly
construct a map G(Γ.σ) → G(Γ/σ) (i.e. point of the contractible mapping
groupoid) and show that this choice is strictly natural.

The map G(Γ.σ)→ G(Γ/σ) over G(Γ) is determined up to unique isomor-
phism by compatibility with the (canonical) pullback functor σ∗ : G(Γ) →
G(Γ/σ) and the diagonal d : idσ → σ∗(σ). Recall from the proof of Lemma
3.28 that a = 〈(σ∗)s, ds〉 : G(Γ.σ)→ G(Γ/σ) and α = ζσ

∗
: G(a) ◦G(p) ∼= σ∗ is

a valid choice. d is stable under strict lcc functors, hence by Lemmas 3.13 and
3.27, a and α are natural in FG-coalgebra morphisms.
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As in the proof of Lemma 3.29, the map in the other direction can be
constructed as composite

b : G(Γ/σ) G(Γ.σ/p(σ)) G(Γ.σ/1) G(Γ.σ),
p/σ v∗ ∼=

where v∗ is the canonical pullback along the variable v, and the components of
the natural isomorphism β : bσ∗ ∼= G(p) are the unique isomorphisms relating
pullback squares

b(σ∗(τ)) p(σ)× p(τ)

1 p(σ)

pr1

v

p(τ) p(σ)× p(τ)

1 p(σ).

〈v,id〉

pr1

v

All data involved in the construction are natural in Γ by Proposition 3.13,
hence so are b and β.

By Remark 3.26, the natural isomorphisms (b, β) ◦ (a, α) ∼= id and id ∼=
(b, β) ◦ (a, α) over G(Γ) are uniquely determined given their domain and
codomain. Their naturality in (Γ, λ) and σ thus follows from that of (a, α) and
(b, β).

Lemma 3.31. Let λ : Γ→ F (G(Γ)) be an FG-coalgebra, let σ, τ be types in
context Γ and let Γ.τ ` t : pτ (σ) be a term. Let t̄ : τ → σ be the morphism in Γ
that corresponds to t under the isomorphism

HomΓ.τ (1, pτ (σ)) ∼= HomΓ/τ (idτ , τ
∗(σ)) ∼= HomΓ(τ, σ)

induced by the equivalence of Lemma 3.30 and the adjunction Στ a τ∗. Then
the square

G(Γ.σ) G(Γ/σ)

G(Γ.τ) G(Γ/τ )

G(〈pτ ,s〉) t̄∗

in LccG(Γ)/ commutes up to a unique natural isomorphism that is compatible
with FG-coalgebra morphisms in (Γ, λ).

Proof. t̄∗ maps the diagonal of σ to the diagonal of τ up to the canonical
isomorphism t̄∗ ◦ σ∗ ∼= τ∗, hence Lemma 3.28 applies.

Theorem 3.32. The cwf Coa sLcc is a model of dependent type theory with
finite product, extensional equality, dependent product and dependent sum types.
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Proof. Coa sLcc has an empty context and context extensions by Proposi-
tion 3.24. Finite product and equality types are interpreted as in sLcc (see
Proposition 3.16).

Let Γ ` σ and Γ.σ ` τ . Denote by a : Γ.σ → Γ/σ the functor that is part
of the equivalence established in Lemma 3.30. Then Γ ` Σσ τ respectively
Γ ` Πσ τ are defined by application of the functors

Γ.σ Γ/σ Γa Σσ

Πσ

to τ .
a being an equivalence and the adjunction σ∗ a Πσ establish an isomorphism

HomΓ.σ(1, τ) ∼= HomΓ/σ(σ∗(1), a(τ)) ∼= HomΓ(1,Πσ(a(τ)))

by which we define lambda abstraction Γ ` λ(t) : Πσ τ for some term Γ.σ ` t : τ
and the inverse to λ (i.e. application of pσ(u) to the variable Γ.σ ` v : σ for
some term Γ ` u : Πσ τ).

Now let Γ ` s : σ and Γ ` t : 〈idΓ, s〉(τ). The pair term u = (s, t) of type
Γ ` Σσ τ is defined by the diagram

〈idΓ, s〉(τ) s∗(a(τ)) Σσ(a(τ))

1 σ.

∼=

a(τ)
t

s

u

Here the isomorphism 〈id, s〉(τ) ∼= s∗(a(τ)) is a component of the natural
isomorphism 〈id, s〉 ∼= s∗ ◦ a constructed in Lemma 3.31, instantiated for τ = 1.
Given just u we recover s by composition with a(τ), and then t as composition

1 s∗(a(τ)) 〈idΓ, s〉(τ).
〈id,u〉 ∼=

These constructions establish an isomorphism of terms s and t with terms u,
so the β and η laws hold.

The functors a, σ∗,Σσ,Πσ and the involved adjunctions are preserved by
FG-coalgebra morphisms (Proposition 3.13, Lemmas 3.30 and 3.31 ), so our
type theoretic structure is stable under substitution.

3.5 Cwf structure on individual lcc categories

In this section we show that the covariant cwf structure on Coa sLcc that we
established in Theorem 3.32 can be used as a coherence method to rectify
Seely’s interpretation in a given lcc category C.

Lemma 3.33. Let λ : Γ→ F (G(Γ)) be an FG-coalgebra. Then the following
categories are equivalent:
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(1) Γop;

(2) the category of isomorphism classes of morphisms in the restriction of the
higher coslice category LccG(Γ)/ to slice categories σ∗ : G(Γ)→ G(Γ/σ);

(3) the category of isomorphism classes of morphisms in the restriction of
the higher coslice category LccG(Γ)/ to context extensions G(pσ) : G(Γ)→
G(Γ.σ);

(4) the full subcategory of the 1-categorical coslice category (Coa Lcc)(Γ,λ)/

given by the context extensions pσ : (Γ, λ)→ (Γ.σ, λ.σ).

Proof. As noted in Remark 3.26, the higher categories in (2) and (3) are
already locally equivalent to discrete groupoids and hence biequivalent to their
categories of isomorphism classes.

The functor from (1) to (2) is given by assigning to a morphism s : τ → σ
in Γ the isomorphism class of the pullback functor s∗ : G(Γ/σ)→ G(Γ/τ ). The
isomorphism class of an lcc functor f : G(Γ/σ)→ G(Γ/τ ) over G(Γ) is uniquely
determined by the morphism

idτ f(idσ) f(σ∗(σ)) τ∗(σ),
∼= f(d) ∼=

which in turn corresponds to a morphism s : τ = Στ idτ → σ, and then f ∼= s∗.
The categories (2) and (3) are equivalent because they are both categories

of weak context extensions (Lemmas 3.28 and 3.29). Finally, the inclusion
of (4) into (3) is an equivalence by the Lemma 3.27. Note that every strict
lcc functor Γ.σ → Γ.τ commuting (up to equality) with the projections pσ
and pτ is compatible with the coalgebra structures of λ.σ : Γ → Γ.σ and
λ.τ : Γ→ Γ.τ .

Definition 3.34. Let C be a covariant cwf and let Γ be a context of C. Then
the coslice covariant cwf CΓ/ has as underlying category the (1-categorical)
coslice category under Γ, and its types and terms are given by the composite
functor CΓ/

cod−−→ C → Fam.

Lemma 3.35. Let C be a covariant cwf and let Γ be a context of C. Then the
coslice covariant cwf CΓ/ has an initial context. If C has context extensions,
then CΓ/ has context extensions, and they are preserved by cod : CΓ/ → C. If
C supports any of finite product, extensional equality, dependent product or
dependent sum types, then so does CΓ/, and they are preserved by cod : CΓ/ →
C

Definition 3.36. Let C be a covariant cwf with an empty context and context
extensions. The core of C is a covariant cwf on the least full subcategory
Core C ⊆ C that contains the empty context and is closed under context
extensions, with types and terms given by Core C ↪→ C → Fam.
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Lemma 3.37. Let C be a covariant cwf with an empty context and context
extension. If C supports any of finite product types, extensional equality types,
dependent product or dependent sums, then so does Core C, and they are pre-
served by the inclusion Core C ↪→ C.

If C supports unit and dependent sum types, then Core C is democratic, i.e.
every context is isomorphic to a context obtained from the empty context by a
single context extension [18].

Theorem 3.38. Let λ : Γ→ F (G(Γ)) be an FG-coalgebra. Then the underlying
category of Core ((Coa sLcc)(Γ,λ)/) is equivalent to U(G(Γ))op. In particular,
every lcc category is equivalent to a cwf that has an empty context and context
extensions, and that supports finite product, extensional equality, dependent
sum and dependent product types.

Proof. Core ((Coa sLcc)(Γ,λ)/) is a covariant cwf supporting all relevant type
constructors by Lemmas 3.35 and 3.37. It is democratic and hence equivalent
to category (4) of lemma 3.33.

Given an arbitrary lcc category C, we set Γ = F (C) and define coalgebra
structure by λ = F (η) : F (C)→ F (G(F (C))). Then G(Γ) is equivalent to both
C and a cwf supporting the relevant type constructors.

3.6 Conclusion

We have shown that the category of lcc categories is a model of extensional
dependent type theory. Previously only individual lcc categories were considered
as targets of interpretations. As in these previous interpretations, we have had
to deal with the issue of coherence: Lcc functors (and pullback functors in
particular) preserve lcc structure only up to isomorphism, whereas substitution
in type theory commutes with type and term formers up to equality.

Our novel solution to the coherence problem relies on working globally, on
all lcc categories at once. In contrast to some individual lcc categories, the
higher category of all lcc categories is locally presentable. This allows the use
of model category theory to construct a presentation of this higher category in
terms of a 1-category that admits an interpretation of type theory.

While we have only studied an interpretation of a type theory with dependent
sum and dependent product, extensional equality and finite product types, it
is straightforward to adapt the techniques of this paper to type theories with
other type constructors. For example, a dependent type theory with a type
of natural numbers can be interpreted in the category of lcc categories with
objects of natural numbers. Alternatively, we can add finite coproduct, quotient
and list types but omit dependent products, and obtain an interpretation in
the category of arithmetic universes [63, 92].

I would expect there to be a general theorem by which one can obtain a
type theory and its interpretation in the category of algebras for every (higher)
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monad M on Cat (with the algebras of M perhaps subject to being finitely
complete and stable under slicing). Such a theorem, however, is beyond the
scope of the present paper.



Chapter 4

The ∞-categorical multiverse
model

Abstract

Locally cartesian closed (lcc) ∞-categories are conjectured to be
a semantics of intensional dependent type theory. As an extension,
homotopy type theory is expected to correspond to elementary∞-toposes.
In contrast to intensional type theory and∞-categories, the corresponding
conjectures for extensional type theory and 1-categories have been resolved
for some time.

Here we explore to what extent the multiverse model of Chapter
3 can be adapted to obtain a model of intensional type theory in lcc
∞-categories. To that end, we first define model categories of sketches for
lex and lcc ∞-categories which are enriched over the model category of
simplicial sets. We then adapt the notion of algebraically fibrant object
to enriched model categories and apply it to lex and lcc sketches to
obtain model categories of strict lex and lcc ∞-categories. These model
categories are models of dependent type theory with weak finite limit
types: Product, unit and identity types exist, but their computation rules
hold only up to proposition equality.

Finally, we consider the model category of algebraically cofibrant
strict lcc∞-categories. In contrast to the 1-categorical case, this category
is not closed under general context extensions. Nevertheless, we identify a
subclass of base types, intuitively those semantic types which do not arise
from type constructors, for which context extensions exist. Dependent
product types Πστ , with propositional instead of extensional computation
rules, can then be constructed as long as the domain σ is a base type.

4.1 Introduction

Extensional dependent type theory is the internal language of lcc categories, and
intensional dependent type theory with function extensionality is conjectured
to be an internal language for lcc ∞-categories. There is a similar conjecture

97
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relating Homotopy Type Theory (HoTT, intensional dependent type theory
with universes and higher inductive types) to elementary ∞-toposes.

Here we explore to what extent the 1-categorical multiverse model of
extensional type theory we discussed in Chapter 3 can be adapted to the
∞-categorical case. The advantage of the multiverse approach is that, while
individual lcc 1-categories need not be complete or cocomplete, the category
thereof is even locally presentable and can be presented by a model category.
In contrast to the approaches of Kapulkin [54] and Kapulkin and Szumiło
[56], this enables the use of advanced model categorical machinery such as
the computation of homotopy (co)limits via resolved diagrams or algebraically
(co)fibrant objects to overcome coherence problems.

Let us first recall intuitively how extensional dependent type theory can be
interpreted in the category of lcc 1-categories [10]:

• Contexts Γ are interpreted as separate lcc categories.

• Types Γ ` σ are interpreted as objects σ ∈ Ob Γ.

• Terms Γ ` s : σ are interpreted as morphisms s : 1 → σ in Γ whose
domains are terminal objects.

• Context morphisms from ∆ to Γ are interpreted as lcc functors Γ→ ∆
in the opposite direction.

• Substitution of types and terms Γ ` s : σ along context morphisms
f : Γ→ ∆ is interpreted as application of lcc functors to morphisms and
objects.

• Context extensions Γ.σ are interpreted as slice categories Γ/σ.

• Type and term formers are interpreted by their categorical counterpart.
For example, if Γ ` σ1 and Γ ` σ2, then the product type Γ ` Prodσ1 σ2

is interpreted as categorical product σ1 × σ2.

This list will also serve as our guiding principle for the interpretation of
intensional type theory in the category of lcc ∞-categories. Note, however,
that even for 1-categories, this list can only serve as a intuitive idea for the
interpretation because it suffers from two problems:

1. Type theory postulates that context extensions Γ.σ satisfy an evident
universal property 1-categorically, whereas the slice category Γ/σ satisfies
the universal property bicategorically. For lcc ∞-categories Γ, the slice
category Γ/σ satisfies the universal property only ∞-categorical.

2. An lcc category Γ is a category in which finite limits and dependent
products exist, but there need not be a canonical choice available. The
type formers of type theory are thus not well-defined. In lcc∞-categories,
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term formers are not well-defined even when the interpretation of types
is fixed.

It is natural to wonder whether, assuming the axioms of choice and suitable
large cardinals, problem 2 can be solved by fixing choice functions which assign
to every lcc category and finite diagram a limit cone over it, and similarly for
dependent products. However, one immediately runs into the problem that
these choices will be preserved by lcc functors only up to isomorphism but not
up to equality as would be required for an interpretation of type theory. Note
also that, for 1-categories, problem 2 is only a problem for the interpretation of
types as objects: Term formers correspond to morphisms which exist uniquely
such that certain diagrams commute, hence once the interpretation of types
is fixed, term formers are uniquely determined. This is not the case for ∞-
categories, where the corresponding morphisms exist not uniquely but up to
contractible homotopy.

Note that problems 1 and 2 are a mismatch of a 1-categorical property
demanded by type theory and the higher categorical property which holds se-
mantically. Model category theory can be understood as a method for expressing
higher categorical phenomena in 1-categorical language. For example, model
categories allow the computation of higher colimits via ordinary 1-categorical
colimits of resolved diagrams. It is then not surprising that the solution to
problems 1 and 2 presented in Bidlingmaier [10] relies crucially on model
categorical machinery. Note that two model categories can present the same
higher category (in this case the (2, 1)-category of lcc categories) despite being
inequivalent as 1-categories. Since the problems arise from a mismatch of the
1-categorical and the higher categorical, it is thus possible that they occur
in some model categories but not in others, even though they present the
same higher category. Our strategy is thus to find a suitable model category
in which 1-categorical and higher categorical constructions line up such that
our coherence problems disappear. To that end, three Quillen (but not 1-
categorically) equivalent model categories are constructed in Bidlingmaier [10],
each a transform of the previous one and more suitable for interpreting type
theory: First the model category of lcc sketches, whose subcategory of fibrant
object is given by lcc categories, lcc functors and natural isomorphisms. Next
the model category of strict lcc categories, which is given by the algebraically
fibrant lcc sketches. Finally the algebraically cofibrant strict lcc categories.

The construction of the three model categories relies almost exclusively
on general model categorical machinery that is applied iteratively to Cat, the
model category of 1-categories. Just like 1-categories, ∞-categories can be
organized as a model category using Joyal’s model category structure on sSet.
Thus the question arises whether applying the same machinery to sSet results
in a solution to coherence problems and an interpretation of type theory, too.
The purpose of this work is to show that this is indeed the case, but with some
qualification.
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First of all, 1-categories and extensional type theory are 1-truncated: Ob-
jects or types can be isomorphic in several different ways, but morphisms or
terms can only be identified in at most one way, precisely when they’re equal.
Thus the coherence problems in the interpretation of extensional type theory
arise on the object/type level only; if these are resolved, there is no problem for
terms. On the other hand, ∞-categories and intensional type theory are not
truncated for any n. Thus coherence problems can arise not only for equations
on types, but also for equations on terms. For example, even in its intensional
variant, dependent type theory has the following β-rules for products, which
hold definitionally:

π1(pairx1 x2) = x1 π2(pairx1 x2) = x2

In 1-categorical semantics, these β-rules correspond to the commutativity
(which is a property, not structure) of the two triangles in the diagram

1

σ1 × σ2

σ1 σ2,

x1 x2
〈x1,x2〉

π1 π2

(4.1)

where 1 denotes the terminal object.
Strict lcc∞-categories are equipped with an operation that assigns to (2, 1)-

horns, i.e. composable pairs of morphisms, canonical extensions to 2-simplices.
There, the projection term π1(x1, x2) is thus interpreted as the edge ∆{0,2} of
the canonical extension to a 2-simplex of the (2, 1)-horn given by the projection
π1 and the interpretation 〈x1, x2〉 of the product term:

σ1 × σ2

1 σ1

π1〈x1,x2〉

π1◦〈x1,x2〉
(4.2)

In 1-categories, commutativity of both (4.1) and (4.2) would mean that x1 =
π1 ◦ 〈x1, x2〉, i.e. that the interpretations of x1 and π1(x1, x2) agree. This
does not hold for ∞-categories, where we are only guaranteed a homotopy
between x1 and π1 ◦ 〈x1, x2〉. Type theoretically, this means that the β-rule
holds only propositionally, i.e. there is a term of type Idx1 π1(x1, x2), but x1

and π1(x1, x2) are not definitionally equal. Similar problems arise with other
β- and η-rules. Thus all type constructors that are constructed here are “weak”
in the sense that all equalities (except for substitution stability) hold only up
to a term of the corresponding identity type.

The paper is structured along the lines of the three model categories of lcc
∞-categories we consider: In Section 4.2 we construct the model category of
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sketches for ∞-categories. This is entirely analogous to the 1-categorical case,
except for the need for the model category to be simplicially enriched instead
of groupoid enriched; the latter sufficed for lcc 1-categories because the higher
category thereof is 2-truncated. A crucial aspect of the theory of lcc categories
is the fact that slices of lcc categories are again lcc. We express this model
categorically by showing that the cone/slice Quillen adjunction on simplicial
sets extends to a Quillen adjunction on sketches for lcc ∞-categories.

In Section 4.3 we construct the model category of strict lcc ∞-categories.
As in the 1-categorical case, it is defined from the model category of sketches
using the formalism of algebraically fibrant objects. However, even if the base
model category is simplicial, the usual construction of algebraically fibrant
objects does not generally result in a simplicial model category. We show that a
variant of the construction, in which lifts must be defined not only on mapping
sets but on mapping spaces, does indeed result in a simplicially enriched model
category, and it is this variant that we use to define the category of strict lcc
∞-categories. Similarly to the 1-categorical case, we then go on to show that
our model category admits the structure of a model of type theory with identity
types and finite product types, albeit only weakly so. We finish the section
with a discussion of the (higher) universal property of slices of lcc ∞-categories.

Finally, in Section 4.4, we consider algebraically cofibrant strict lcc ∞-
categories. Here part of the analogy with the 1-categorical case breaks down:
We can only prove that context extensions, which exist unconditionally in the
1-categorical case, exist for base types in the ∞-categorical case. Base types
are types which are not composite, i.e. not the result of a type constructor.
Thus the existence of general context extensions in the category of algebraically
cofibrant strict lcc 1-categories must be understood as a peculiarity of the
1-categorical world. Nevertheless, we show that the 1-categorical strictification
lemma has an ∞-categorical analogue, and that dependent product types Πστ
can be interpreted as long as the domains σ are base types.

4.2 Sketches

In this section, we construct the model categories of sketches for lex (finitely
complete) and lcc∞-categories. Our approach follows closely that of Isaev [47],
who defines a model category of ∞-categories which admit limits of a given
shape. Starting from the base model category of∞-categories, we thus consider
the model category of marked objects inM, i.e. simplicial sets equipped with
sets of marked diagrams. The purpose of the markings is to denote diagrams
which we intend to have some universal property but which might not (yet)
actually satisfy them, i.e. in our case the projection maps of finite limits and
evaluation maps of dependent products. We then localize the model category
of marked objects at a set of morphisms which encode the axioms that marked
diagrams are supposed to modify. This localization has the effect of reducing
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the fibrant objects to precisely those whose markings satisfy the appropriate
universal property.

In addition to the machinery developed by Isaev [47], we show in the
following Subsection 4.2 that model categories of marked objects have canonical
simplicial structure if the base model categories are simplicial; this will be
needed in later sections. We then apply the machinery in Subsection 4.2 to
construct the model category of sketches for lex and lcc ∞-categories. In
contrast to Isaev [47], we choose as base model category the model category
sSet+ of (equivalence-)marked simplicial sets (equivalently, cartesian fibrations
over the point [62, Section 3.1.3]), which is simplicially enriched.

Finally, in Subsection 4.2 we show that the cone and slice adjunction on
simplicial sets extends to an adjunction on sketches for lcc ∞-categories. This
is a model categorical phrasing of the statement that lex and lcc categories are
stable under slicing.

Marked simplicial sets and ∞-categories

Let us begin by recalling some notions of enriched model category theory and
∞-category theory. Let V be a cartesian closed monoidal model category.
A V-enrichment (as model category) of a model category M consists of a
V-enrichment of the underlying categories such thatM is V-bicomplete (i.e.
all tensors and powers exist) and one (hence all) of the following equivalent
axioms hold:

1. If j : A→ B is a cofibration inM and f : X → Y is a fibration inM,
then the induced map

M(B,X)→M(A,X)×M(A,Y )M(B, Y )

on hom-objects is a fibration in V , and a trivial fibration if one of j or f
are furthermore weak equivalences.

2. If j : U → V is a cofibration in V and f : X → Y is a fibration in M,
then the map

XB → XA ×XB Y B

induced by powering is a fibration inM, and a trivial fibration if one of
j or f are furthermore weak equivalences.

3. If j : U → V is a cofibration in V and j′ : A→ B is a cofibration inM,
then the induced map

j � j′ : V ⊗AqU×A U ⊗B → V ⊗B

induced by tensoring is a cofibration inM, and a trivial cofibration if
one of j or j′ are furthermore weak equivalences.
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If F : V ′ � V : G is a Quillen adjunction andM =MV is V-enriched, then
the mapping objectsMV ′(X,Y ) = G(MV(X,Y )) define a V ′-enrichment on
the underlying model 1-category ofM. A simplicial model category is a model
sSet-category, where sSet is endowed with the Kan model structure (see below).

The simplex category ∆ is the category of finite linearly ordered sets. A
simplicial set is a presheaf over ∆; the category thereof is denoted by sSet.
sSet carries two model category structures of relevance to us:

1. The Kan model structure. Its cofibrations are the monomorphisms, and
its fibrations are the maps with the right lifting property against the horn
inclusions Λn

i ⊆ ∆n, n ≥ 1, 0 ≤ i ≤ n. The fibrant simplicial sets are
called Kan complexes. The weak equivalences of the Kan model structure
are the homotopy equivalences, i.e. maps whose geometric realization is
a homotopy equivalence of topological spaces. sSet is a locally finitely
presentable category. The boundary inclusions ∂∆n ⊆ ∆n generate the
cofibrations, and the horn inclusions Λni ⊆ ∆n generate the trivial cofibra-
tions. Consequently, sSet with the Kan model structure is combinatorial.
This model structure is simplicial, i.e. enriched as a model category over
itself, via its cartesian closed structure.

2. The Joyal model structure. The cofibrations are again the monomor-
phisms, and its fibrant objects are the ∞-categories, i.e. simplicial
sets with the right lifting property against all inner Kan inclusions
Λn
i ⊆ ∆n, n ≥ 2, 0 < i < n. The weak equivalences, also referred to

as categorical equivalences, are the maps f : X → Y such that

E(sSet(Y, C))→ E(sSet(X, C))

is a weak equivalence in the Kan model structure for all ∞-categories
X. Here E : sSet→ sSet denotes the functor assigning to a simplicial set
the largest Kan complex contained in it. The Joyal model structure is
combinatorial, but no explicit description of a generating set of trivial
cofibrations is known. Consequently, no explicit description of the class of
fibrations is known. Fibrations of ∞-categories are understood, however:
A map f : C → D of ∞-categories C and D is a fibration in the Joyal
model structure if and only if f is an inner fibration and an isofibration.
f being an inner fibration means that it has the right lifting property
with respect to the inner horn inclusions, while f being an isofibration
means that for every equivalence e : x→ y in D and every vertex y′ in D
such that f(y′) = y, there exists an equivalence e′ with codomain y′ such
that f(e′) = e.

Every categorical equivalence is a weak equivalence in the Kan model
structure. Thus the Kan model structure is a localization of the Joyal
model structure. In contrast to the Kan model structure, the Joyal model
structure is not simplicial via the cartesian closed structure: Cartesian
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products and powers induce a self-enrichment over sSet with the Joyal
model structure, but not over sSet with the Kan model structure.

The lack of simplicial enrichment of the Joyal model structure poses problems
for us since some of our constructions are well-defined only on simplicial model
categories. Fortunately, there is an alternative model category presenting
the ∞-category of ∞-categories which is simplicial: The model category of
cartesian fibrations over the point [62, Section 3.1.3]. The underlying category
is sSet+ = sSet+

/∆0 , the category of marked simplicial sets. Marked simplicial
sets are pairs (X,E), where X is a simplicial set and E ⊆ X1 is a set of edges
containing at last the degenerated edges. Morphisms f : (X,E) → (X ′, E′)
are maps f : X → Y of underlying simplicial sets such that f(E) ⊆ E′. The
evident forgetful functor U : sSet+ → sSet admits a left adjoint and a right
adjoint, both of which are sections to the forgetful functor. The left adjoint
X 7→ X[ equips simplicial sets X with their minimal marking, i.e. precisely the
degenerated edges are marked. The right adjoint X 7→ X] equips simplicial
sets X with their maximal marking, i.e. all edges are marked. The maximal
marking functor has a further right adjoint Core : sSet+ → sSet which assigns
to a marked simplicial set the simplicial set spanned by the marked edges.
We often suppress application of the minimal marking functor, so that e.g.
∆n = (∆n)[ denotes the minimally marked n-simplex in positions where a
marked simplicial set is expected.

sSet+ is not a Grothendieck topos: The maps X[ → X] are both mono and
epi, but usually not isomorphisms. sSet+ is, however, a Grothendieck quasito-
pos, hence locally presentable and locally cartesian closed. Thus for marked
simplicial sets X,Y , there exists a marked simplicial set sSet+(X,Y ) whose
vertices are the maps X → Y . We denote by sSet+

'(X,Y ) = Core(sSet+(X,Y ))
the core of the mapping objects. An n-simplex of U(sSet+(X,Y )) is a map
X×(∆n)[ → Y , and an edgeX×(∆1)[ → Y is marked if it factors viaX×(∆1)].
An n-simplex of the simplicial set sSet+

'(X,Y ), then, is a map X × (∆n)] → Y .
Intuitively, we can think of sSet+(X,Y ) as ∞-category of functors X → Y and
their (possibly non-invertible) natural transformations, whereas sSet+

'(X,Y )
contains only the invertible natural transformations. More generally, if C is
a category enriched over sSet+, we denote by C'(X,Y ) = Core(C(X,Y )) the
sSet-enrichment induced by the Core functor.

In addition to minimal and maximal marking, the forgetful functor U :
sSet+ → sSet has a third section. It assigns to simplicial sets X the naturally
marked simplicial set X\, in which precisely the equivalences are marked, i.e.
those edges e : x→ y for which there exist 2-simplices which can be depicted
as

y

x x

e

=

x

y y.

e

=
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Let E = Core ◦ \ : sSet→ sSet+ → sSet be the functor assigning to simplicial
sets their subsets spanned by the equivalences. If C is an ∞-category, then

E(sSet(K, C)) ∼= sSet+
'(K[, C\)

for all simplicial sets K. The model category structure on sSet+ is given as
follows. The cofibrations are the monomorphisms. The fibrant objects of sSet+

are the marked simplicial sets of the form C\ for some ∞-category C. A map
f : X → Y in sSet+ is a weak equivalence if and only if the map

sSet+
'(Y, C\)→ sSet+

'(X, C\)

is a weak equivalence in the Kan model structure for all ∞-categories C. The
adjunction [ : sSet� sSet+ : U is a Quillen equivalence of sSet with the Joyal
model category structure with sSet+ [62, Theorem 3.1.5.1]. The adjunction
U : sSet+ � sSet : ] is a adjunction with the Kan model structure [62, Theorem
3.1.5.1]. If C is an∞-category, then Core(C\) is a Kan complex [62, Proposition
1.2.5.3], which implies that the adjunction ] : sSet� sSet+ : Core is a Quillen
adjunction with the Kan model structure on sSet.

It follows from Lurie [62, Corollary 3.1.4.3] that the self-enrichment via
the cartesian closed structure of sSet+ is also an enrichment in the model
categorical sense. Since the Core functor is right Quillen, the change of
enrichment induced by Core defines the structure of a simplicial model category
on every model sSet+-categoryM. The simplicial mapping spaces are given
byM'(X,Y ) = Core(M(X,Y )), tensors by S ⊗X = S] ⊗X and powers by
XS = X(S]) for simplicial sets S and X inM. In particular, we can regard
sSet+ itself as a simplicial model category. Since ] is a right Quillen functor
and a section to Core, we can regard simplicial model categories as a particular
case of model sSet+-categories for which the marked simplicial setsM(X,Y )
of maps X → Y are valued in maximally marked simplicial sets.

Note that the forgetful functor U : sSet+ → sSet preserves fibrations and
trivial fibration, and that it preserves and reflects cofibrations. The natural
marking functor (−)\ and U restrict to an isomorphism of subcategories of
fibrant objects, and both (−)\ and U preserve weak equivalences . By the
following lemma, with a proof due to Alexander Campbell1, U also preserves
and reflects fibrations on fibrant objects:

Lemma 4.1. Let f : C → D be a map of fibrant objects C,D in sSet+. Then f
is a fibration if and only if the underlying map of simplicial sets is a fibration
in the Joyal model structure.

Proof. Factor f as

C D

E

f

j p

1https://mathoverflow.net/a/404540

https://mathoverflow.net/a/404540
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with j a trivial cofibration and p a fibration in sSet+. Since D is fibrant and
p is a fibration, it follows that E is fibrant. Because U preserves cofibrations
and preserves weak equivalences of fibrant objects, U(f) is a trivial cofibration.
Since U is a right Quillen functor, U(p) is a fibration. It follows that the
fibration U(f) is a retract of U(p). Because U is full and faithful on fibrant
objects, it follows that f is a retract of p. By construction, p is a fibration,
hence so is f .

Recall that for (unmarked) simplicial sets K,L, there exist categorically
equivalent join constructionsK?L (the ordinary join) andK�L (the alternative
join). This categorical equivalence is given by a quotient map φ : K�L→ K? as
in Lurie [62, Proposition 4.2.1.2] which is uniquely determined by commutativity
of the following diagram:

K q L

K � L K ? L

∆0 �∆0 = ∆1 = ∆0 ?∆0

f

By Riehl and Verity [72, Lemma 2.4.12], the functors sSet → sSetK/ given
by the (alternative) joins K ? −,K � −,− ? K,− � K for fixed K are left
Quillen functors from the Joyal model structure to the coslice model category
over K. Their right adjoints are given by the (alternative) slices L/p, L/p and
coslices Lp/, Lp/ for maps p : K → L. Transposing the comparison maps
φ : K �L→ K ?L, we obtain maps L/p → L/p and Lp/ → Lp/, and these, too,
are weak equivalences whenever L is an ∞-category.

We now lift both join operations and their parametric right adjoints to
marked simplicial sets such that they commute with the forgetful functor
U : sSet+ → sSet. Let K and L be marked simplicial sets. The marked join
K ? L is given by the join U(K) ? U(L) with the least markings such that
U(K) → U(K) ? U(L) and U(L) → U(K) ? U(L) preserve markings. The
marked alternative join K � L is defined similarly.

Let p : K → L be a map of marked simplicial sets. Then the marked slice
K/p is given by the slice U(K)/U(p), and an edge ∆1 → U(K/p) is marked if
and only if its image in U(K) is marked. The coslice Kp/ is defined similarly,
as are alternative slice K/p and alternative coslice Kp/. One can then show
that the marked (co)slice functors so-defined are indeed right adjoints to the
marked join functors.

Note that even for unmarked simplicial sets, the ordinary join and (co)slice
functors are only 1-categorically adjoint. The alternative join and alternative
(coslice) adjunctions on sSet, on the other hand, are simplicial with respect to
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the simplicial enrichment via cartesian closure. This holds because the squares

S × L L

S × (K � L) (S ×K) � L
p

S ×K K

S × (K � L) K � (S × L)
p

(4.3)
are pushout squares for all simplicial sets S,K and L [70, 51.16]. For the
alternative slice, the natural isomorphism sSetL/(K � L,P ) ∼= sSet(X,P /p) for
simplicial sets K,L and maps p : L→ P is then induced by the Yoneda lemma
from

Hom(S, sSetL/(K � L,P ))

∼= HomS×L/(S × (K � L), P )

∼= HomL/((S ×K) � L,P )

∼= Hom(S ×K,P p/)
∼= Hom(S, sSet(K,P p/))

for all simplicial sets S. Here in the second line we consider P as an object
under S ×L via the map S ×L→ L

p−→ P . The analogous isomorphism for the
alternative coslice is defined similarly using the other pushout square of (4.3).

It can be shown that the squares (4.3) are also pushout squares when
S,K and L are marked simplicial sets. It follows that marked alternative
join and marked alternative (co)slices are adjoint in the sSet+-enriched and
sSet-enriched sense. Model categorically, marked joins and slices behave much
like their unmarked versions. To prove this, we need the following lemma:

Lemma 4.2. Let f : K → L be a map of marked simplicial sets which generates
markings, i.e. edges in x : ∆1 → U(L) are marked if and only if there exists
a marked edge x′ : ∆1 → U(K) such that x = fx′. Suppose that U(f) is a
categorical equivalence. Then f is a weak equivalence in sSet+.

Proof. Let C be an∞-category. Since f generates markings, a map g : U(L)→
U(C\) preserve preserve markings if and only if gf : U(K) → U(L) → U(C\)
preserves markings. Thus

sSet+
'(L, C\) sSet+

'(U(L)[, C\)

sSet+
'(K, C\) sSet+

'(U(K)[, C\)

is a pullback square. The bottom arrow is a fibration because U(K)[ → K
is a monomorphism and hence a cofibration in sSet+. The right vertical
arrow is isomorphic to the map E(sSet(U(L), C))→ E(sSet(U(K), C)), which
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is a homotopy equivalence of simplicial sets because U(f) is a categorical
equivalence. It follows by right properness of the Kan model structure that also
the left vertical map is a homotopy equivalence. Letting C vary, we conclude
that f is a weak equivalence in sSet+.

Proposition 4.3. Let K and L be marked simplicial sets. Then the comparison
map K � L → K ? L of marked joins is a weak equivalence in sSet+. If C is
an ∞-category and p : K → C\ is a map of marked simplicial sets, then the
comparison maps (C\)/p → (C\)/p and (C\)p/ → (C\)p/ are weak equivalences in
sSet+.

Proof. By Lemma 4.2.

Lemma 4.4. Let f : K → L be a Kan fibration of simplicial sets K,L. If
there exists a family of maps (`i : Li → L)i∈I such that every vertex of L is in
the image of `i for some i and the pullback `∗i (f) is a homotopy equivalence for
all i, then f is a trivial Kan fibration.

Proof. The Kan fibration f is a trivial Kan fibration if and only if the pullback
of f along every vertex x : ∆0 → L in the codomain is a trivial Kan complex.
By assumption, x factors via Li for some i ∈ I. We thus have a diagram

f−1({x}) Li ×L K K

∆0 Li L

k∗i (f) f

ki

of pullback squares. Fibrations and trivial fibrations are stable under pullback,
hence k∗i (f) is a trivial fibration, and f−1({x}) is a trivial Kan complex.

Next we show that, as in the unmarked case, the marked join/(co)slice
adjunction are Quillen.

Proposition 4.5. Let K be a marked simplicial set. Then all of

K ?− − ?K K � − − �K

are left Quillen functors sSet+ → sSet+
K/.

Proof. The join and alternative join functors on simplicial sets preserve cofi-
brations (i.e. monomorphisms) in each argument. Since the forgetful functor
sSet+ → sSet reflects cofibrations, it follows that the marked join and marked
alternative join functors preserve cofibrations in each argument.

Thus it remains to show that trivial cofibrations f : K → K ′ and g : L→
L′ of marked simplicial sets are preserved. By Proposition 4.3, there is a
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commutative diagram
K � L K ? L

K ′ � L′ K ′ ? L′

f�g f?g

in which both horizontal maps are weak equivalences. By two-out-of-three for
weak equivalences, f ? g is a trivial cofibration if and only if f � g is a trivial
cofibration. Thus it suffices to show that f � g is a trivial cofibration. Since
f � g = (g � id)◦ (id� f) and the case f = id is dual to g = id, we further reduce
to g = id.

Let C be a ∞-category. We need to show that the Kan fibration f̄ :
sSet+

'(K ′ � L, C\) → sSet+
'(K � L, C\) is a trivial Kan fibration. Consider for

some map p : L→ C\, i.e. vertex p : ∆0 → sSet+
'(L, C\), the diagram

sSet+
'(K ′, (C\)/p) sSet+

'(K ′ � L, C\)

sSet+
'(K, (C\)/p) sSet+

'(K � L, C\)

∆0 sSet+
'(L, C\).

f̄p f̄

p̄

p

It follows from the enrichment of the marked alternative join/slice adjunction
that the lower square and the outer rectangle are pullback squares, hence by the
pasting law also the upper square is a pullback. The map C/U(p) → C reflects
equivalences, hence (C\)/p = (C/U(p))\ is a naturally marked ∞-category. f is
assumed to be a trivial cofibration, so f̄p is a trivial Kan fibration. Since every
map K � L → C\ can be restricted to a map p : L → C\, the family of maps
p̄ for all p satisfies the assumptions of Lemma 4.4. Thus f̄ is indeed a trivial
Kan fibration.

In the remainder of the paper, we will almost exclusively work with the
model category sSet+ instead of sSet and the Joyal model structure due to
the simplicial enrichment of sSet+. Thus “∞-category” usually refers to a
naturally marked simplicial set with the right lifting property against inner
horn inclusions. Note that the minimal marking functor (−)[ (whose application
we usually suppress) preserves cofibrations and trivial cofibrations. Since most
trivial cofibration in sSet+ constructed in this paper are minimally marked
maps of simplicial sets, it is usually sufficient to verify that the map is a
trivial cofibration in the Joyal model structure. Similarly, most fibrations we
consider are maps of ∞-categories. Thus to show that the maps in question
are indeed fibrations it suffices to check that the underlying map in sSet is an
inner fibration and an isofibration.
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Model categories of marked objects

Here we show that model categories of marked objects [47] are simplicial if the
underlying model category is simplicial, and sSet+-enriched if the underlying
model category is sSet+-enriched. Recall that a marked object in a model
category M with respect to a shape functor i : I → M valued in cofibrant
objects consists of an underlying object U(X) in M equipped with a set of
morphisms of the form k : i(K)→ U(X), the markings which is stable under
precomposition by images of morphisms in I. We denote the category of marked
objects by Mi. The forgetful functor U : Mi → M has both a left adjoint
(−)[ given by endowing and a right adjoint (−)]. If X is an object inM, then
X[ is such that no map i(K) → U(X[) is marked, while for X] every map
i(K)→ U(X]) is marked. Mi carries the structure of a model category such
that U : Mi →M preserves and reflects cofibrations, the fibrant objects of
Mi are those whose image in M is fibrant and in which the markings are
stable under homotopy, and the weak equivalences are those whose image in
M is a weak equivalence and which reflect markings up to homotopy. Thus a
map f : X → Y inMi is a weak equivalence if and only if the induced map
γ(f) : γ(X)→ γ(Y ) is an isomorphism in Ho(M)γi, i.e. and isomorphism of
marked objects in the homotopy category with respect to the shape functor
I

i−→M γ−→ Ho(M).

Proposition 4.6. LetM be a model sSet+-category in which every object is
cofibrant and let i : I → C be a diagram in C. Then the model category Mi

carries the structure of a model sSet+-category such that the mapping objects
Mi(X,Y ) ⊆M(U(X), U(Y )) are given by the full marked simplicial subsets
spanned by the vertices corresponding to marking preserving maps X → Y . If
M is simplicially enriched (i.e. ifM(X,Y ) is maximally marked for all X,Y ),
then alsoMi is simplicially enriched. The adjunctions (−)[ a U a (−)] extend
to sSet+-adjunctions.

Proof. Let us first show that Mi is complete and cocomplete as a sSet+-
enriched category, i.e. show that all tensors and powers exist. Let S be a
marked simplicial set and let X be a marked object. We define the tensor
S ⊗X by U(S ⊗X) = S ⊗ U(X) such that maps k : i(K) → S ⊗ U(X) are
marked if and only if they are of the form

k : i(K)
k0−→ U(X) ∼= ∆0 ⊗ U(X)

s⊗id−−−→ S ⊗ U(X)

for some marked k0 : i(K)→ U(X) and vertex s : ∆0 → S. Powers are defined
dually, and the universal properties hold by construction.

Next let us verify the pushout product axioms, i.e. that for all maps
i : S → T of marked simplicial sets and maps j : X → Y of marked objects,
the canonical map i� j : S ⊗ Y qS⊗X T ⊗X → T ⊗ Y

1. is a cofibration if both i and j are cofibrations, and that
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2. it is a trivial cofibration if furthermore one of i or j is a trivial cofibration.

Since U reflects cofibrations, 1 follows from the pushout product axiom inM.
For 2 we have to show in both cases that i� j reflects markings up to homotopy.
Every marking in T ⊗ Y is of the form

K = ∆0 ⊗K t⊗k−−→ T ⊗ U(Y )

for some marked map k : K → U(Y ) and vertex t : ∆0 → T .
Suppose first that i is a trivial cofibration of marked simplicial sets. Note

that the fibrant marked simplicial sets are those with the right lifting property
against a set of trivial cofibrations which are isomorphisms on vertices. It follows
by the small object argument, that there exists a fibrant replacement functor
η : Id⇒ R : sSet+ → sSet+ such that ηK is a trivial cofibration for all marked
simplicial sets K and an isomorphism on vertices. Then R(i) : R(S)→ R(T )
is a weak equivalence of fibrant objects, hence Core(R(I)) : Core(R(S)) →
Core(R(T )) is a homotopy equivalence of Kan complexes. Thus there exists an
edge e : (∆1)] → R(T ) such that e(∆{1}) = t and e(∆{0}) = R(i)(ηS(s)) for
some s : ∆0 → S. We claim that

K
s⊗k−−→ S ⊗ U(Y )→ S ⊗ U(Y )qS⊗U(X) T ⊗ U(Y )

is a preimage up to homotopy of t⊗ k under i� j. Let η′ : Id⇒ R′ :M→M
be a fibrant replacement functor. A left homotopy h relating the two maps

K ⇒ T ⊗ U(Y )→ R′(T ⊗ U(Y ))

is given as composite

(∆1)] ⊗K e⊗K−−−→ R(T )⊗K c−→ R′(T ⊗ U(Y )).

Here the comparison map c is constructed as follows. The universal property
of the tensor T ⊗ U(Y ) is given by a map T → M(U(Y ), T ⊗ U(Y )). The
maps k : i(K) → U(Y ) and T ⊗ U(Y ) → R′(T ⊗ U(Y )) then induce a map
T → M(i(K), R′(T ⊗ U(Y ))), and the codomain of this map is a fibrant
marked simplicial set because i(K) is cofibrant and R′ is a fibrant replacement
functor. Since T → R(T ) is a trivial cofibration, we obtain a map R(T ) →
M(i(K), R′(T ⊗ U(Y ))), which corresponds to the map c : R(T ) ⊗ i(K) →
R′(T ⊗ U(Y )).

Now suppose that j is a trivial cofibration of marked objects. The pushout
product i� j is defined by a diagram

S ⊗X T ⊗X

S ⊗ Y ·

T ⊗ Y.

S⊗j

p
f T⊗j

i�j
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If S⊗ j is a trivial cofibration, then f is a trivial cofibration, and if furthermore
B⊗j is a trivial cofibration, then i�j is a weak equivalence by 2-out-of-3. Thus
it suffices to show that T ⊗ j is a trivial cofibration for all marked simplicial
sets T . Since every marked simplicial set is cofibrant, T ⊗− :M→M is a left
Quillen functor, and U :Mi →M reflects cofibrations. Thus it only remains
to show that the marking T ⊗ j reflects some marking i(K)

t⊗k−−→ T ⊗ U(Y ) up
to homotopy if j is a weak equivalence inMi. Since j is a weak equivalence, k
has a preimage k′ : i(K)→ U(X) up to a homotopy h forming a commuting
diagram

i(K) i(K) (∆1)] ⊗ i(K)

U(X) U(Y )

R′(U(X)) R′(U(Y )).

k′

∆{0}⊗i(K)

k

∆{1}⊗i(K)

hη′
U(X)

U(j)

η′
U(Y )

R′(U(j))

Here η′ : Id⇒ R′ :M→M denotes the unit of a fibrant replacement functor
with trivial cofibrations as components. Then

i(K) i(K) (∆1)] ⊗ i(K)

T ⊗ U(X) T ⊗ U(Y )

T ⊗R′(U(X)) T ⊗R(U(Y ))

t⊗k′

∆{0}⊗i(K)

t⊗k

∆{1}⊗i(K)

t⊗hT⊗η′
U(X)

U(j)

T⊗η′
U(Y )

R′(U(j))

commutes, and the maps T ⊗ ηU(X) and T ⊗ ηU(Y ) are weak equivalences
because T ⊗− :M→M preserves trivial cofibrations. It follows that t⊗ k′ is
a preimage of s⊗ k′ up to homotopy.

Proposition 4.7. Let i : I →M be a functor from a small category I to a
model categoryM and let F :M� N : G be an adjunction with a category N .

1. The adjunction F a G induces an adjunction F i : Mi � N Fi of cate-
gories of marked objects.

2. IfM and N are sSet+-enriched, then F i a Gi is sSet+-enriched.
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3. IfM and N are model categories, i is valued in the cofibrant objects ofM
and F a G is a Quillen adjunction, then F i a Gi is a Quillen adjunction.
If F a G is a Quillen equivalence, then F i a Gi is a Quillen equivalence.

Proof. 1. The left adjoint F i assigns to an object X inMi the object F (U(X))

inM whose markings are maps of the form F (i(K))
F (k)−−−→ F (U(X)) for marked

maps k : i(K)→ U(X) in X. The right adjoint Gi assigns to marked objects
Y in N i the underlying object G(U(Y )) whose markings are given by the
transposes k̄ : i(K)→ G(U(Y )) of marked maps k : F (i(K))→ U(Y ).

2. This follows from F i and Gi being 1-categorical adjoint because the
marked simplicial setsMi(X,Y ) are given by the full subsets ofM(U(X), U(Y ))
of spanned by the vertices corresponding to marking preserving maps, and
similarly for N .

3. Note first that NFi is a well-defined model category because the left
Quillen functor F preserves cofibrant objects. Clearly F i preserves cofibrations.
Preservation of weak equivalences follows from the square

Mi N Fi

Ho(M)γi Ho(N )γF i,

F i

γi γFi

Ho(F )γi

which commutes up to natural isomorphism: The weak equivalences in the
two model categoriesMi and NFi are those whose morphisms whose image
in Ho(M)γi and Ho(N )γF i are isomorphisms, respectively. The same diagram
implies that Quillen equivalences F a G induce Quillen equivalences F i a
Gi.

Model categories of lex and lcc ∞-categories

Here we use the machinery of marked objects to define model categories of
sketches for finitely complete (lex) and locally cartesian closed (lcc)∞-categories.
Intuitively, sketches should be thought of as blueprints for the actual objects
we are interested in.

Definition 4.8. Let C be a finitely complete ∞-category and consider a
diagram z

g−→ x
f−→ y in C. Denote by (C∆1

)pb
/f the full subcategory of the slice

over f spanned by pullback squares:

· ·

x y

y

f
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A dependent product f and g is a terminal object in the ∞-category Cf,g
determined by the following pullback square:

Cf,g (C∆1
)pb
/f

C/g C/x.

(4.4)

Here the right vertical arrow is induced by the domain functor C∆1 → C.

Thus a dependent product of f and g is terminal among the diagrams of
the following shape:

· · ·

· ·
g

y

f

Note that if C has all finite limits, then the functor (C∆1
)pb
/f → C/y induced

by the codomain functor C∆1 → C is a categorical equivalence and admits a
section for all f : x→ y.

Definition 4.9. A finitely complete ∞-category C is locally cartesian closed
(lcc) if for all morphisms f : x → y, some (hence every) choice of pullback
functor f∗ : C/y → (C∆1

)pb
/f → C/x has a right adjoint.

Proposition 4.10. Let C be finitely complete ∞-category. Then C is lcc if and
only if for all composable morphisms g and f in C, there exists a dependent
product of f and g.

Proof. Let f : x → y be a map in C and let f∗ : C/y → (C∆1
)pb
/f → C/x be a

choice of pullback functor. Then f∗ has a left adjoint if and only if for each
object g : z → x of C/x, the ∞-category Cf∗,g defined by the pullback square

Cf∗,g C/y

(C/x)/g C/x

f∗ (4.5)

has a terminal object [52, 17.4]. Since all involved marked simplicial sets are
∞-categories, i.e. fibrant, and the map (C/x)/g ∼= C/g → C/x is a fibration Lurie
[62, Corollary 2.1.2.2], it follows that (4.4) and (4.5) are homotopy pullback
squares. The categorical equivalence C/y → (C∆1

)pb
/f thus induces a categorical

equivalence Cf∗,g → Cf,g, which implies that one of the two categories has a
terminal object if and only if the other one has a terminal object.



4.2. SKETCHES 115

Definition 4.11. The discrete category Ilex of lex shapes is given by triples
C = (C,K, φ), where C andK are finite simplicial sets and φ : γ(C) ∼= γ(∆0?K)
is an isomorphism of C with the cone ∆0 ?K in Ho(sSet+). There is an evident
functor Ilex → sSet+ which maps C = (C,K, φ) to C[; we often suppress
application of this functor and consider C implicitly as object of sSet+. A
lex-marked simplicial set is an Ilex-marked object of sSet+.

The discrete category of Ilcc ⊇ Ilex of lcc shapes is given by extending Ilex

as follows. Denote by Pi the simplicial set which can be depicted as follows:

· · ·

· ·
g

e

p1

p2

f2

f1

(4.6)

In addition to the objects of Ilex, the objects of Ilcc are given by tuples (P, φ)
with P a finite simplicial set and γ(φ) : γ(P ) → γ(Pi) an isomorphism of P
with Pi in Ho(sSet+). We extend the functor Ilex → sSet+ to Ilcc by mapping
(P, φ) to P [. As before, we suppress application of the functor Ilcc → sSet+.
An lcc-marked simplicial set is an Ilcc-marked object of sSet+.

The category of lcc-marked simplicial sets can be described equivalently as
a category of marked objects of lex-marked simplicial sets. Thus we have a
sequence of forgetful functors

(sSet+)Ilcc (sSet+)Ilex sSet+ sSet
]

[

]

[

]

[

(4.7)

with left adjoints [ given by minimal marking and right adjoints ] given by
maximal marking. All adjunctions are Quillen. As in the case of sSet and
sSet+, we generally suppress application of the minimal marking functors, so
that e.g. ∆n can denote the minimally lcc-marked n-simplex. The symbols
U , [ and ] are used polymorphically and can denote any (composition) of the
forgetful, minimal marking and maximal marking functors of (4.7).

Ilex and Ilcc can be understood as “signatures” of lex and lcc categories;
they encode the shape of universal objects we expect to exist in lex and lcc
categories, but not their universal property. The universal properties of these
objects, the “axioms”, are instead encoded as a sets of cofibrations at which
we then localize (sSet+)Ilex and (sSet+)Ilcc . This has the effect of reducing the
fibrant objects to those with the right lifting property against these cofibrations.

Definition 4.12. Let K be a finite simplicial set. For n ≥ 0, we denote by
jnlimK : AnlimK → Bn

limK the map of lex-marked simplicial sets given as follows.
The map of simplicial sets underlying jnlimK is the map ∂∆n ? K → ∆n ? K.
For n ≥ 1 the maps from (∆0 ?K,K, id) to the subsets ∆{n} ?K ∼= ∆0 ?K are
marked in both AnlimK and Bn

limK ; in the codomain Bn
limK this is also the case

for n = 0.
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Now let Ci = (Ci,K, φi), i ∈ {1, 2} be two objects of Ilex which agree on
the second component K and let f : C1 → C2 be a categorical equivalence such
that

γ(C2)

γ(C1) γ(∆0 ? K)

φ2

φ1

commutes in the homotopy category of sSet with the Joyal model structure.
Denote by

−→
f =

−→
f C1,C2 the map (C2, {f}) → (C2, {idC2 , f}) and by

←−
f =

←−
f C1,C2 the map (C2, {idC2})→ (C2, {idC2 , f}).

The model category Lex of sketches for finitely complete ∞-categories is
the left Bousfield localization of (sSet+)Ilex at the family of morphisms of the
form jnlimK and morphisms of the form

←−
f and

−→
f .

Definition 4.13. Let jΛ2
2

Π : A
Λ2

2
Π → B

Λ2
2

Π be the map of lcc-marked simplicial

sets such that U(A
Λ2

2
Π ) = U(B

Λ2
2

Π ) = Pi and U(j
Λ2

2
Π ) is the identity on Pi, with

id : (Pi, id) → Pi marked in both A
Λ2

2
Π and B

Λ2
2

Π , while in B
Λ2

2
Π additionally

(∆0 ? Λ2
2,Λ

2
2, id)

∼=−→ ∆1 ×∆1 s−→ Pi is marked. Here s denotes the inclusion of
the square with boundary given by the edges pi, fi of diagram (4.6) into Pi.

Now let n ≥ 0. We denote by jnΠ the map of lcc-marked simplicial sets
given as follows. The underlying simplicial set of AnΠ is the pushout of

∂∆n ?∆1 ∂∆n ?∆0 (∂∆n ?∆0)×∆1

where the left map is the inclusion of ∂∆n ? ∆{1} and the right map is the
inclusion of (∂∆n ?∆0)×∆{0}.

The underlying simplicial set of Bn
Π is defined as pushout of the following

span:
∆n ?∆1 ∆n ?∆0 (∆n ?∆0)×∆1

Note that the difference to the diagram defining U(AnΠ) is that ∂∆n is replaced
by ∆n. The map jnΠ is induced by the boundary inclusion ∂∆n ⊆ ∆n and
functoriality of all involved operators.

A0
Π is minimally marked. The underlying simplicial set of B0

Π is canonically
isomorphic to the simplicial set Pi as in diagram (4.6), where the left summand
∆0 ? ∆1 corresponds to the triangle given by e, g and p1, while the right
summand (∆0 ? ∆0) ×∆1 corresponds to the square given by the fi and pi.
The markings of B0

Π are given by (Pi, id)→ Pi ∼= U(B0
Π) and the inclusion of

(∆0 ?Λ2
2,Λ

2
2, id) into the right summand ∆0 ?Λ2

2
∼= ∆1 ×∆1 ∼= (∆0 ?∆0)×∆1.

For n > 0, the markings in the domain AnΠ are given by the squares
(∆0 ?Λ2

2,Λ
2
2, id)→ (∆{i} ?∆0)×∆1 ⊆ (∂∆n ?∆0)×∆1 for i ∈ {0, . . . , n}, and

the map (Pi, id)
∼=−→ U(B0

Π) → U(AnΠ) induced by the last vertex ∆{n} ⊆ ∆n.
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The markings of Bn
Π for n > 0 are defined similarly, i.e. minimally such that

jnΠ preserves markings.
Let P1 = (P1, φ1) and P2 = (P2, φ2) be two objects of Ilcc \ Ilex, and let

f : P1 → P2 be a categorical equivalence such that

γ(P2)

γ(P1) γ(Pi)

φ2

φ1

γ(f)

commutes in the homotopy category. Denote by
←−
f =

←−
f P1,P2 the map

(P2, {f1})→ (P2, {f1, id}) and by
−→
f =

−→
f P1,P2 the map (P2, {id})→ (P2, {f1, id}).

The model category Lcc of sketches for locally cartesian closed ∞-categories
is the left Bousfield localization of (sSet+)Ilcc at the family of morphisms given
by the minimally marked morphisms of Definition 4.12, the morphism j

Λ2
2

Π and
morphisms of the form jnΠ,

−→
f and

←−
f .

It follows from the universal property of the left Bousfield localization that
Lcc can equivalently be described as a left Bousfield localization of marked
objects in Lex, and that the minimal marking functor (sSet+)Ilex

[−→ (sSet+)Ilcc

extends to a left Quillen functor Lex
[−→ Lcc. Note that the maximal marking

functors ]sSet+ → Lex and ] : Lex→ Lcc are not right Quillen functors because
they do not preserve fibrant objects.

Left Bousfield localizations of simplicial model categories are again simplicial.
Thus the mapping spaces Lex'(X,Y ) = (sSet+)Ilex

' (X,Y ) and Lcc'(X,Y ) =
(sSet+)Ilcc

' (X,Y ) satisfy the pullback power axioms also with respect to the
(trivial) cofibrations and fibrations of Lex and Lcc. This is not generally true for
other enrichments, such as enrichment over sSet+, however. A necessary and
sufficient condition for sSet+-enrichment (and, more generally, enrichment over
a model category in which all objects are cofibrant) is given by the following
lemma:

Lemma 4.14. LetM be a model sSet+-category, let W be a set of morphisms
in M and suppose that the left Bousfield localization W−1M exists. Then
W−1M is sSet+-enriched as model category if and only if the W -local objects
ofM are closed under powers by all marked simplicial sets.

Proof. Powering by cofibrant objects is a right Quillen functor and hence
preserves fibrant objects. Since every marked simplicial set is cofibrant, it
follows that the W -local fibrant objects of M, i.e. the fibrant objects of
W−1M, are stable under powers if W−1M is a model sSet+-category.

Conversely, suppose that the fibrant W -local objects are stable under
powers, and let us verify the pushout product axiom. Thus let i : S → T be
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a cofibration of marked simplicial sets and let j : X → Y be a cofibration in
W−1M. The pushout product i� j is defined by commutativity of the diagram

S ⊗X T ⊗X

S ⊗ Y ·

T ⊗ Y.

S⊗j

p
f T⊗j

i�j

The cofibrations ofM and W−1M agree, hence i� j is a cofibration if both i
and j are cofibrations by the pushout product axiom forM. Similarly, if i is
furthermore a trivial cofibration, then i� j is a trivial cofibration inM and
hence also a trivial cofibration in W−1M. We are thus left with the case where
i is a cofibration and j is a trivial cofibration in W−1M.

If S ⊗ j is a trivial cofibration in W−1M, then f is a trivial cofibration in
W−1M, and if furthermore T ⊗ j is a trivial cofibration, then by 2-out-of-3
also i� j is a weak equivalence in W−1M. Thus it suffices to show that S ⊗ j
is a trivial cofibration in W−1M for all marked simplicial sets S.

Since all marked simplicial sets are cofibrant S ⊗ j is a cofibration inM,
hence a cofibration in S−1M. Thus we are left with proving that S ⊗ j is a
weak equivalence in W−1M. This holds if and only if

M'(S ⊗ j, Z) :M'(S ⊗ Y,Z)→M'(S ⊗X,Z),

is a homotopy equivalence for all W -local fibrant objects Z ofM. Equivalently,
we can show that the isomorphic map

M'(j, ZS) :M'(Y, ZS)→M'(X,ZS),

is a homotopy equivalence. This holds because j is a weak equivalence in
W−1M and ZS is a W -local fibrant object ofM by assumption.

Lemma 4.15. 1. Let C be a fibrant object of Lex. Then U(C) ∈ sSet+ is
a finitely complete ∞-category such that for (C,K, φ) ∈ Ob Ilex, a map

(C,K, φ)→ U(C) is marked if and only if the map γ(∆0?K)
φ−1

−−→ γ(C)→
γ(U(C)) in Ho sSet+ is in the image of a limit cone ∆0 ? K → U(C).

2. Let C be a fibrant object of Lcc. Then U(C) ∈ Ob Lex is a fibrant object,
hence satisfies the conditions of 1. A map k : (P, φ)→ U(C) is marked if
and only if γ(k) ◦ φ−1 : γ(Pi)→ γ(U(C)) is in the image of a dependent
product. That is, there exists a diagram k′ : Pi→ U(C), which we may
depict as

· · ·

· ·
g

p1

p2

f2

f1
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such that k′ corresponds to a terminal object of Cf1,g and γ(k) ◦ φ−1 =
γ(k′).

Proof. 1. First consider markings (∆0 ? K,K, id)→ U(C). By assumption, C
has the right lifting property against jnlimK for all n ≥ 0. The lifting property
against j0

limK implies the existence of a cone ∆0 ?K → U(C) marked as a limit
over every diagram p : K → U(C). The lifting property against jnlimK for n ≥ 1
then asserts that every boundary ∂∆n → U(C)/p whose last vertex is marked
as a limit cone admits a filler. Thus marked cones ∆0 ? K → U(C) exist over
every finite diagram K → U(C), and such cones are limit diagrams. Since
limit cones are stable under homotopy and markings in the fibrant lex-marked
category C are stable under homotopy, maps k : (K,∆0 ? K, id) → U(C) are
marked if and only if they are limit cones.

Now consider a general object C = (C,K, φ) of Ilex. The functor γ :
sSet+ → Ho(sSet+) is surjective when restricted to hom-sets from cofibrant to
fibrant objects. Thus there exists a cospan

C
i−→ C ′

f←− K ?∆0 (4.8)

such that φ−1 = γ(i)−1 ◦ γ(f), where i is a trivial cofibration and C ′ is fibrant,
i.e. a fibrant replacement of C. Without loss of generality we may assume that
i : C → C ′ is given by the small object argument, i.e. that it is a transfinite
composition of a chain C = C0 → C1 → · · · → Cn → . . . where Cn+1 is got
from Cn as pushout of a map in a set J of generating trivial cofibrations. sSet+

is generated by finite trivial cofibrations, hence each Cn is a finite simplicial
set. Since K ?∆0 is finite, f factors via some Cn0 . Replacing C ′ in (4.8) with
Cn0 , we thus assume that C ′ is finite (though not fibrant). φ−1 and γ(i) are
isomorphisms, hence γ(f) is an isomorphism and f is a weak equivalence.

Now let c0 : (C, φ,K)→ U(C) be an arbitrary map. By lifting c0 against
the trivial cofibration i and composing with f , we obtain a commuting diagram

C U(C)

C ′

K ?∆0

c0

i c1

f

c2

such that γ(c0)◦φ−1 = γ(c2). Note that (C ′,K, γ(f)−1) is an object of Ilex. By
the right lifting property of C against

−→
i and

←−
i it follows that c0 is marked if

and only if c1 is marked. Similarly, by considering
−→
f and

←−
f , it follows that c1

is marked if and only if c2 is marked. c2 is marked if and only if is a limit cone.
Since being a limit cone is invariant under homotopy, this is the case if and only
if γ(c2) = γ(c′2) for some limit cone c′2 : ∆0 ? K → U(C). Thus c0 is marked if
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and only if c2 is marked, which is the case if and only if γ(c2) = γ(c0) ◦ φ−1 is
in the image of a limit cone.

2. The forgetful functor U : Lcc → Lex is a right Quillen functor, so it
preserves fibrant objects. The lifting property against j0

Π implies the existence of

a marked map k : (Pi, id)→ U(C) under every pair z g−→ x
f−→ y of composable

morphisms. The lifting property against jΛ2
2

Π then implies that the square
∆1 ×∆1 s−→ Pi→ U(C) is a pullback square, hence k corresponds to a vertex
of Cf,g. The lifting property against jnΠ for n ≥ 1 then implies that marked
diagrams (Pi, id)→ U(C) under g, f are terminal objects of Cf,g. Dependent
products are defined in terms of a universal property, hence stable under
equivalence. Thus precisely the maps (Pi, id) → U(C) which correspond to
dependent products are marked.

We reduce the case of a map k0 : (P, φ) → U(C) in Ilcc \ Ilex to the case
(Pi, id) as in the proof of point 1: There exists a cospan

P
j−→ P ′

f←− Pi

of finite simplicial sets such that j is a trivial cofibration, f is a weak equivalence
and φ = γ(f)−1 ◦ γ(j). (P ′, γ(f)) is an object of Ilcc \ Ilex, and we obtain a
commuting diagram

P U(C)

P ′

Pi.

k0

j k1

f

k2

The right lifting property against
←−
i ,
−→
i ,
←−
f and

−→
f now implies that k0 is

marked if and only if k2 is marked, hence the result follows from our earlier
classification of marked maps (Pi, id)→ U(C).

Lemma 4.16. 1. Denote for n ≥ 0 and finite simplicial set K by j̃nlimK :
ÃnlimK → B̃n

limK the morphism of lex-marked simplicial sets which is
defined analogously to jnlimK but with the alternative join � instead of ?.
Thus U(j̃nlimK) is the inclusion ∂∆n � K ⊆ ∆n � K. The markings in
domain (for n ≥ 1) and codomain are of the form (∆0 �K,K, γ(φ))→
∆{n} �K, where φ : ∆0 �K → ∆0 ? K is the canonical comparison map.

Then Lex agrees with the localization of (sSet+)Ilex at the morphisms of
the form

←−
f ,
−→
f and j̃nlimK .

2. Denote for n ≥ 0 by j̃nΠ : ÃnΠ → B̃n
Π the morphism of lcc-marked simplicial

sets which is defined analogously to jnΠ but with the alternative join �
instead of ?. Thus U(ÃnΠ) is the pushout of

∂∆n �∆1 ← ∂∆n �∆0 ↪→ (∂∆n �∆0)×∆1
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and U(B̃n
Π) is defined by the analogous pushout diagram with ∆n in

place of ∂∆n. The limit markings in domain (for n ≥ 1; Ã0
Π is minimally

marked) and codomain are given by the maps (∆0?Λ2
2,Λ

2
2, id)→ ∆1×∆1 ∼=

(∆{i}�∆0)×∆1 for 0 ≤ i ≤ n. Let P̃i = U(B̃0
Π) and denote by φ : P̃i→ Pi

the map induced by the comparison maps X � Y → X ? Y . Since the
product functor − × ∆1 preserves weak equivalences and the pushouts
defining Pi and P̃i are Reedy cofibrant, φ is a weak equivalence. Dependent
product markings in ÃnΠ and B̃n

Π are given by the maps (P̃i, φ)→ U(AnΠ)

and (P̃i, φ)→ U(Bn
Π) induced by the last vertex ∆{n} ⊆ ∆n.

Then Lcc agrees with the localization of (sSet+)Ilcc at the minimally
marked morphisms of item 1 and the morphisms of the form

←−
f ,
−→
f , j

Λ2
2

Π

and j̃nΠ.

Proof. We only prove 1, the proof of 2 is similar. Working in the localization of
(sSet+)Ilex at the morphisms of the form

←−
f and

−→
f , we construct a commuting

diagram

ÃnlimK ĀnlimK ÂnlimK AnlimK

B̃n
limK B̄n

limK B̂n
limK Bn

limK

j̃nlimK j̄nlimK ĵnlimK jnlimK

for every n ≥ 0 and finite simplicial K in which all horizontal maps are weak
equivalences. It follows that in every localization in which j̃nlimK is a weak
equivalence also jnlimK is a weak equivalence and vice versa.

We explain the construction of the top row of this diagram; the bottom
row is constructed similarly. We define U(ĵnlimK) as the map U(jnlimK), but
equip ÂnlimK and B̂n

limK with more markings than AnlimK and Bn
limK : In

addition to the marked maps (∆0 ? K,K, id)
c−→ U(AnlimK) also the map c′ :

(∆0�,K, γ(φ)) → ∆0 ? K
c−→ U(ÂnlimK) is marked (for n ≥ 1), where φ :

∆0 � K → ∆0 ? K is the canonical comparison map. The evident maps
AnlimK → ÂnlimK and Bn

limK → B̂n
limK are pushouts of

←−
φ and hence weak

equivalences.
The comparison map X � Y → X ? Y for all X,Y induces a map ÃnlimK →

ÂnlimK , and we define ĀnlimK as image of this map. The map U(ÃnlimK) →
U(ĀnlimK) in sSet+ is a categorical equivalence and it induces an isomorphism
of marked objects in the homotopy category of lex-marked objects, so it is a
weak equivalence.

ĀnlimK → ÃnlimK is the identity on underlying simplicial sets, but for ĀnlimK

only c′(∆0 �K,K, γ(φ)) → ∆0 ? K → U(ĀnlimK) is marked, while for ÂnlimK

also c : (∆0 ? K,K, id) → U(ĀnlimK) is marked. Thus ĀnlimK → ÃnlimK is a
pushout of

−→
φ , i.e. a weak equivalence.
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Lemma 4.17. Let C be an ∞-category with a terminal object. Denote for
each n ≥ 0 by ∆n

t (C) the full subset of sSet+
'(∆n, C) spanned by the simplices

x : ∆n → C such that x(∆{n}) is a terminal object, and denote similarly by
∂∆n

t (C) the full subset of sSet+
'(∂∆n, C) spanned by the simplices x : ∂∆n → C

such that x(∆{n}) is a terminal object (for n ≥ 1). Then the canonical map
∆n
t (C)→ ∂∆n

t (C) is a trivial Kan fibration.

Proof. The boundary inclusion ∂∆n ⊆ ∆n is a cofibration and C is fibrant in
sSet+, hence sSet+

'(∆n, C) → sSet+
'(∂∆n, C) is a Kan fibration for all n. For

n > 0, ∆n
t (C)→ ∂∆n

t (C) is a pullback of this map, hence also a Kan fibration.
∆0
t (C) is the core of the subcategory of C spanned by the terminal objects,

which is a contractible Kan complex, and ∂∆0
t (C) = ∆0. Thus it remains to

show that ∆n
t (C)→ ∂∆n

t (C) is a weak equivalence for n ≥ 1.
∂∆1

t (C) can be described as the product of E(C) = sSet+
'(∆{0}, C) with

the simplicial subset of E(C) spanned by terminal objects. For each terminal
object x of C, there is a map x̄ : E(C)→ ∂∆1

t (C) given by the constant map
with value x and the identity on E(C). Now

E(C/x) ∆1
t (C)

E(C) ∂∆1
t (C)

x̄

is a pullback square. x being terminal, the map on the left-hand side is a trivial
Kan fibration. Every vertex ∆0 → ∂∆1

t (C) factors via E(C)→ ∂∆1
t (C) for some

x, thus Lemma 4.4 applies and ∆1
t (C)→ ∂∆1

t (C) is a trivial Kan fibration.
Now let n ≥ 2 and assume that the proposition holds in dimensions < n.

The square
∂∆{0,2,...,n} ∆n−1

Λn1 ∂∆n

is a pushout square, hence

∂∆n
t (C) ∆n−1

t (C)

(Λn1 )t(C) ∂∆
{0,2,...,n}
t (C)

(4.9)

is a pullback square. Here (Λn
1 )t(C) is defined as the simplicial subset of

sSet+
'(Λn

1 , C) spanned by the maps x : Λn
1 → C with x(∆{n}) terminal. The

right vertical map in (4.9) is a trivial Kan fibration by the induction hypothesis,
hence the map on the left is a trivial Kan fibration. Because C is an∞-category
and Λn1 → ∆n is a trivial cofibration, the map sSet+

'(∆n, C)→ sSet+
'(Λn1 , C) is
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a trivial fibration, and, as a pullback of this map, so is ∆n
t (C)→ (Λn1 )t(C). By

two-out-of-three and the commuting triangle

∂∆n
t (C)

∆n
t (C) (Λn1 )t(C)

it follows that the map ∆n
t (C)→ ∂∆n

t (C) is a weak equivalence.

Proposition 4.18. Let C be a sketch for a finitely complete ∞-category. Then
C is fibrant in Lex if and only if U(C) ∈ sSet+ is a finitely complete ∞-category
such that for (C,K, φ) ∈ Ob Ilex, a map (C,K, φ) → U(C) is marked if and

only if the map γ(∆0 ? K)
φ−1

−−→ γ(C)→ γ(U(C)) in Ho sSet+ is in the image
of a limit cone ∆0 ? K → U(C).

Proof. Every fibrant object of Lex satisfies the condition by Lemma 4.15.
Conversely, let C be a lex sketch such that U(C) with precisely the finite limit
cones marked. We show that C for j : A→ B any morphism of the form

←−
f ,
−→
f

or j̃nlimK as in Lemma 4.16, the map

Lex'(j, C) : Lex'(B, C)→ Lex'(A, C)

is a homotopy equivalence. Let first j =
←−
f or j =

−→
f , where f : C1 → C2 is a

categorical equivalence of finite simplicial sets and C2 = (C2,K, φ) is an object
of Ilex (so that C1 = (C1,K, φ ◦ γ(f)) is an object of Ilex, and j mediates
between C1-markings and C2-markings). Then U(j) ∈ sSet+ is an isomorphism,
hence so is sSet+

'(U(j), U(C)). The hom-spaces Lex'(−, C) ⊆ sSet+
'(−, U(C))

are given by the full subspaces spanned by vertices corresponding to marking-
preserving maps HomLex(−, C). Thus it suffices to show that HomLex(j, C) is
an isomorphism (i.e. that C is orthogonal to j), and then also Lex'(j, C) will
be an isomorphism and in particular a homotopy equivalence.

Consider first j =
←−
f . Then C is orthogonal to j if and only if whenever

k : C2 → U(C) is such that (C1,K, φ ◦ γ(f))
f−→ C2

k−→ U(C) is marked, then
also k : (C2,K, φ) → U(C) is marked. By assumption on C, if kf is marked,
then γ(kf) ◦ (φ ◦ γ(f))−1 = γ(k′) : γ(∆0 ? K)→ U(C) for some limit cone k′ :
∆0?K → U(C). But then also γ(k′) = γ(k)◦φ−1 = γ(kf)◦(φ◦γ(f))−1 is in the
image of a limit cone. C is

−→
f -orthogonal if and only if in the preceding situation,

when k : (C2, φ,K)→ U(C) is marked, then also (C1, φ◦γ(f),K)
f−→ C2

k−→ U(C)
is marked. If k is marked, then γ(k) ◦ φ−1 = γ(k′) : γ(∆0 ? K)→ γ(U(C)) for
some limit cone k : ∆0 ?K → U(C). But then γ(kf)◦ (φ◦γ(f))−1 = γ(k)◦φ−1,
hence kf : (C1, φ ◦ γ(f),K)→ U(C) is marked.

Now let j = j̃nlimK for some n ≥ 0 and finite simplicial set K. j is a
cofibration of lcc-marked objects, so Lex(j, C) is a Kan fibration. Thus we may
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apply Lemma 4.4 to show that it is a trivial Kan fibration. Let k : K → U(C)
and consider the following diagram:

sSet+
'(∆n, U(C)/k) sSet+

'(∆n �K,U(C))

sSet+
'(∂∆n, U(C)/k) sSet+

'(∂∆n �K,U(C))

∆0 sSet+
'(K,U(C))k

By simplicial enrichment of the alternative join/slice adjunction, the outer and
lower rectangles are pullbacks, hence so is the upper rectangle. Taking into
account the markings of ÃnlimK , B̃

n
limK and C, it follows that

∆n
t (U(C)/k) Lex'(B̃n

limK , C)

∂∆n
t (U(C)/k) Lex'(ÃnlimK , C)

is a pullback square, and the map on the left-hand side is a trivial Kan fibration
by Lemma 4.17. Every vertex p : ÃnlimK → C of Lex'(ÃnlimK , C) factors through
∂∆n

t (U(C)/k) if we take for k the restriction of U(p) : ∂∆n � K → U(C) to
K ⊆ ∆n �K.

Note that the left Bousfield localization of a simplicial category is again
simplicial. This is not true for other enrichments, however. Nevertheless, Lex
inherits sSet+-enrichment from (sSet+)ILex :

Corollary 4.19. Lex is a model sSet+-category.

Proof. By Lemma 4.14, it suffices to show that the fibrant lex sketches are
stable under powers by marked simplicial sets S. By Proposition 4.18, the
fibrant lex sketches are the finitely complete ∞-categories C with precisely
the finite limit diagrams marked. By Lurie [62, Corollary 5.1.2.3], a cone
∆0 ?K → U(C) = U(C)S is a limit cone if and only if the composites ∆0 ?K →
U(C)S U(C)s−−−→ U(C)∆0

= U(C) is a limit cone for all vertices s : ∆0 → S. By
construction of the powers of marked objects in Proposition 4.6, it follows that
precisely the finite limit cones are marked in CS , which is thus a fibrant lex
sketch.

Lemma 4.20. Let C be an ∞-category and let z g−→ x
f−→ y be a composable

pair of morphisms in C. Denote by (C∆1
)
/f
pb the full subcategory of the slice
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(C∆1
)/f given by the pullback squares of the form

· ·

x y

y

f

and define Cf,g by the following pullback diagram:

Cf,g (C∆1
)
/f
pb

C/g C/x.

Then the map Cf,g → Cf,g induced by the maps

(C∆1
)pb
/g → (C∆1

)
/g
pb C/y → C/y C/f → C/f

is a categorical equivalence. In particular, a vertex of Cf,g is terminal if and
only if its image in Cf,g is terminal.

Proof. By Lurie [62, Proposition 2.1.2.1 and Proposition 4.2.1.6], the fibre
products defining Cf,g and Cf,g are homotopy fibre products. It follows that
the categorical equivalences on the cospans defining the fibre products induce
a weak equivalence on fibre products.

Proposition 4.21. Let C be a sketch for an lcc ∞-category. Then C is
fibrant in Lcc if and only if U(C) ∈ Ob sSet+ is an lcc ∞-category, maps
c : (C,K, φ)→ U(C) are marked if and only if γ(c) ◦ φ−1 is in the image of a
limit cone ∆0 ?K → U(C), and maps k : (P, φ)→ U(C) are marked if and only
if γ(k) ◦ φ−1 is in the image of a dependent product Pi→ U(C).

Proof. Every fibrant object of Lcc satisfies the condition by Lemma 4.15.
Conversely, let C be an lcc category with marked finite limit cones and dependent
products. Then by by Proposition 4.18, U(C) ∈ Ob Lex is jnlimK-local for all n,
←−
f C1,C2-local and

−→
f C1,C2 for all suitable f , hence, equivalently, C is (jnlimK)[-

local, (
←−
f C1,C2)[-local and (

−→
f C1,C2)[-local.

Thus it remains to show that C is
←−
f P1,P2-local,

−→
f P1,P2-local, j

Λ2
2

Π -local
and jnΠ-local for all n ≥ 0.

←−
f -locality and

−→
f -locality can be proved as in

Proposition 4.18. A similar argument as in the proof of Proposition 4.18 shows
that jΛ2

2
Π -locality can be reduced to jΛ2

2
Π -orthogonality, which is clear since the

square ∆0 ? Λ2
2
s−→ Pi

k−→ U(C) of a dependent product k is a pullback square.
Thus it remains to show that C is jnΠ-local for all n ≥ 0, or, equivalently by

Lemma 4.16, j̃nΠ-local. j̃
n
Π is a cofibration, hence

Lcc(j̃nΠ, C) : Lcc(B̃n
Π, C)→ Lcc(ÃnΠ, C)
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is a Kan fibration. We will show that it is a trivial Kan fibration using Lemma
4.4.

Recall that U(B̃n
Π) = ∆n �∆1 q∆n�∆0 (∆n �∆0)×∆1 ∈ sSet+, hence

sSet+
'(U(B̃n

Π), U(C)) sSet+
'(∆n �∆0, U(C)∆1

)

sSet+
'(∆n �∆1, U(C)) sSet+

'(∆n �∆0, U(C))

y

is a pullback square. There is an analogous pullback square for ÃnΠ in place of
B̃n

Π, in which the n-simplex ∆n is replaced by the boundary ∂∆n.

Let z g−→ x
f−→ y be a composable pair of morphisms in C, corresponding to

a map 〈g, f〉 : Ã0
Π → U(C). There are maps Ã0

Π → ÃnΠ and Ã0
Π → ÃnΠ induced

by the unique map ∂∆0 = ∅ ⊆ ∂∆n ⊆ ∆n on the components of the pushouts
defining Ã0

Π, Ã
n
Π and B̃n

Π:

C

∆1 ∆0 ∆0 ×∆1

∂∆n �∆1 ∂∆n �∆0 (∂∆n �∆0)×∆1

∆n �∆1 ∆n �∆0 (∆n �∆0)×∆1

g
x

f

Taking into account the markings of ÃnΠ, B̃
n
Π and C, it follows that the lower

square and the outer rectangle of

∆n
t (U(C)f,g) Lcc'(B̃n

Π, C)

∂∆n
t (U(C)f,g) Lcc'(ÃnΠ, C)

∆0 Lcc'(Ã0
Π, C)

k

〈g,f〉

〈g,f〉

are pullbacks, hence so is the upper square. Because U(C) is lcc, k is a trivial
fibration. Thus the family of maps 〈g, f〉 for all f, g satisfies the conditions of
Lemma 4.4.

Remark 4.22. In contrast to Lex, the model category Lcc of lcc sketches is
not enriched over sSet+ in the model categorical sense: Lcc categories are not
closed under powers by arbitrary marked simplicial sets.
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Cocone and slice sketches for lex and lcc ∞-categories

Here we show that lex and lcc categories are stable under slicing. The model
categorical phrasing of this fact is that the right Quillen functor sSet+

∆0/
→ sSet+

given by (x : ∆0 → K) 7→ K/x extends to right Quillen functors Lex∆0/ → Lex
and Lcc∆0/ → Lcc.

Note that the join functors ?, � : sSet+×sSet+ → sSet+ preserve categorical
equivalences in both arguments and hence descend along γ : sSet+ → Ho(sSet+)
to functors

?h, �h : Ho(sSet+)×Ho(sSet+)
∼=−→ Ho(sSet+ × sSet+)→ Ho(sSet+).

The natural comparison maps K � L→ K ? L for all marked simplicial sets K
and L are weak equivalences, hence induce a natural equivalence �h ∼= ?h.

Definition 4.23. Let A be a lex sketch. The lex cocone sketch A. ∈ Ob Lex
is given by the underlying marked simplicial set U(A.) = U(A) ?∆0 and the
following markings: For every marked map c : (C,K, φ) → U(A), the map
c ? ∆0 : (C ? ∆0,K ? ∆0, φ′) → U(A.) is marked in U(A.). Here φ′ is the
composite

γ(C?∆0) = γ(C)?γ(∆0)
φ?hγ(∆0)−−−−−−→ γ(∆0?K)?hγ(∆0) = γ((∆0?K)?∆0)

∼=−→ γ(∆0?(K?∆0)).

The alternative lex cocone sketch A. ∈ Ob Lex is given by the underlying
simplicial set U(A.) = U(A)�∆0 and the following markings: For every marked
map c : (C,K, φ)→ U(A), the map c �∆0 : (C �∆0,K ?∆0, φ′)→ U(A.) is
marked in U(A.). Here φ′ is the map

γ(C �∆0) = γ(C)�hγ(∆0)
φ�hγ(∆0)−−−−−−→ γ(∆0?K)�hγ(∆0)

∼=−→ γ(∆0?(K?∆0))

induced by φ, the natural isomorphism �h ∼= ?h and associativity of ?.
Now let x : ∆0 → A be an object A. The lex slice sketch A/x is given

by the underlying marked simplicial set U(A/x) = U(A)/x and the following
markings: A map c : (C,K, φ)→ U(A/x) is marked if and only if its transpose
c′ : (C ?∆0,K ?∆0, φ′)→ U(A) is marked in A. The alternative lex slice sketch
A/x is given by the underlying marked simplicial set U(A/x) = U(A)/x and the
following markings: A map c : (C,K, φ)→ U(A/x) is marked if and only if its
transpose c′ : (C �∆0,K ?∆0, φ′)→ U(A) is marked in A.

Definition 4.24. Let A be an lcc sketch. The lcc cocone sketch A. is given by
the underlying lex sketch U(A.) = U(A). ∈ Lex with lcc-markings given by
the maps

(P, φ)
k−→ U(A)→ U(A).

for marked k : (P, φ)→ U(A). The alternative lcc cocone sketch A. ∈ Ob Lex
is given by the underlying lex sketch U(A.) = U(A). with lcc-markings given
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by the maps
(P, φ)

k−→ U(A)→ U(A).

for marked k :: (P, φ)→ U(A).
Now let x : ∆0 → A be an object A. The lcc slice sketch A/x is given by

the underlying marked simplicial set U(A/x) = U(A)/x with maps c : (P, φ)→
U(A)/x marked if and only if

(P, φ)
c−→ U(A)/x → U(A)

is marked. The alternative lcc slice sketch A/x is given by the underlying lex
sketch U(A/x) = U(A)/x with maps c : (P, φ)→ U(A)/x marked if and only if

(P, φ)
c−→ U(A)/x → U(A)

is marked.

Proposition 4.25. The adjunction sSet+ � sSet+
∆0/

given by (alternative)
cocone and slice extend to adjunctions Lex � Lex∆0/ and Lcc � Lcc∆0/ via
the (alternative) lex and lcc cocone and slice constructions. In case of the
alternative cocone and alternative slice, also the sSet+-adjunction extends to
sSet+-adjunctions of lex and lcc cocone and slice.

Proof. The 1-categorical adjunctions are by definition. As for the enriched ad-
junction in case of the alternative cocone and slice, note that the marked simpli-
cial sets Lex(X,Y ) and Lcc(X,Y ) are defined as full marked simplicial subsets
of sSet+(U(X), U(Y )) given by the vertices of marking-preserving mapsX → Y .
Since the 1-categorical adjunction establishes an isomorphism of the vertices of
Lex∆0/(X., (Y, y : ∆0 → U(Y ))) and Lex(X,Y /y), it follows that the isomor-
phism sSet+

∆0/
(U(X) �∆0, (U(Y ), y : ∆0 → U(Y ))) ∼= sSet+(U(X), U(Y )/Y )

restricts to an isomorphism Lex∆0/(X., (Y, y : ∆0 → U(Y ))) ∼= Lex(X,Y /y),
and similarly for Lcc.

Our next goal is to prove that the slice functors preserve fibrant objects,
and then that the cocone functors preserve trivial cofibrations.

Lemma 4.26. Let (fi : X → Yi)i∈I be a family of trivial cofibrations in a
model categoryM. Then the map f : X →

∐
X Yi is a trivial cofibration.

Proof. f can be obtained as the coproduct of the trivial cofibrations idX
fi−→ fi

in the coslice model category under X.

Lemma 4.27. Let A and B be marked simplicial sets. Then the canonical map

A ?∆0 q∆0 ∆0 ? B → A ?∆0 ? B

is a trivial cofibration of marked simplicial sets.
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Proof. The map is a monomorphism, hence a cofibration, and it reflects mark-
ings. Thus it suffices to prove that the map is a categorical equivalence in sSet
for simplicial sets A,B.

We first reduce to the case A = ∆m, B = ∆n by skeletal induction. We
thus need to show that the set of simplicial sets A,B for which the proposition
holds is closed under coproducts, countable sequential colimits of cofibrations,
and under pushouts along cofibrations. More generally, we show closure under
colimits over Reedy cofibrant diagrams I → sSet in each argument, where I is
a Reedy category such that colim : sSetI → sSet is a left Quillen functor.

Thus let I be such a Reedy category, let A : I → sSet be Reedy cofibrant,
and suppose that

ψi : A(i) ?∆0 q∆0 ∆0 ? B → A(i) ?∆0 ? B

is a categorical equivalence for all i ∈ Ob I. We need to show that

ψ : (colimA) ?∆0 q∆0 ∆0 ? B → (colimA) ?∆0 ? B

is a categorical equivalence. Join functors and pushout functors, regarded as
functors to coslice model categories, are left Quillen functors; in particular,
they preserve colimits and Reedy cofibrant diagrams. Thus ψ = colimi∈I ψi,
where we regard (ψi)i∈I as natural transformation of Reedy cofibrant diagrams

I sSet sSet∆0/ sSet∆0?B/
A −?∆0

(the last functor is the pushout functor along ∆0 → ∆0 ? B) and

I sSet sSet∆0?B/
A −?∆0?B

The forgetful functor sSet∆0?B/ → sSet preserves and reflects weak equivalences.
Thus every ψi is a weak equivalence in sSet∆0?B/, hence ψ = colimi∈I ψi is a
weak equivalence in sSet∆0?B/, hence it is a categorical equivalence in sSet.
The argument for B is dual.

We are thus left with the case of A = ∆m and B = ∆n for some m,n ≥ 0.
For m = n = 0, the map in question is the inclusion of the inner horn Λ2

1 ⊆ ∆2,
which is a trivial cofibration. We proceed by induction over the well-ordering
(m0, n0) < (m1, n1) ⇐⇒ m0 < m1 ∨ n0 < n1. Thus let m,n ≥ 0 such that
the proposition holds for (m,n− 1) and for (m− 1, n).

Define maps fi : ∆m ? ∆0 q∆0 ∆0 ? ∆n → Fi for 0 ≤ i ≤ m by pushout
squares

∆{0,...,̂i,...,m} ?∆0 q∆0 ∆0 ?∆n ∆{0,...,̂i,...,m} ?∆0 ?∆n

∆m ?∆0 q∆0 ∆0 ?∆n Fi
pfi
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and for m+ 2 ≤ i ≤ m+ 2 + n and i0 := i−m− 2 by pushout squares

∆m ?∆0 q∆0 ∆0 ?∆{0,...,̂i0,...,n} ∆m ?∆0 ?∆{0,...,̂i0,...,n}

∆m ?∆0 q∆0 ∆0 ?∆n Fi.
pfi

By the induction hypothesis, the top arrow in both diagrams are trivial cofibra-
tions, hence so are the fi. Note that under the isomorphism ∆m ?∆0 ?∆n ∼=
∆m+2+n, the subobject ∆m ?∆0 q∆0 ∆0 ?∆n is contained in Λm+2+n

m+1 . On the
other hand, Fi contains the ith face of ∆m+2+n for each i. We thus have a
commuting diagram

∆m ?∆0 q∆0 ∆0 ?∆n colim fi ∆m ?∆0 ?∆n

∆{0,...,m+1} ∪∆{m+1,...,m+2+n} Λm+2+n
m+1 ∆m+2+n.

f

∼= ∼= ∼=

Here colim fi denotes the colimit of the Fi under ∆m ?∆0 q∆0 ∆0 ?∆n. f is a
trivial cofibration by Lemma 4.26, and Λm+2+n

m+1 ⊆ ∆m+2+n is an inner horn
inclusion.

Lemma 4.28. Let S be a marked simplicial set. Then the canonical map
r : (S ?∆m)×∆n → (S ×∆n) ?∆m admits a section.

Proof. Define a proposed section s by commutativity of

S ?∆m (S ×∆n) ?∆m ∆n ?∆m

S ?∆m (S ?∆m)×∆n ∆n

= s

p1?∆m p2?∆m

f

p1 p2

Here f denotes the unique retraction to the inclusion ∆n ↪→ ∆n ?∆m, i.e. via
the isomorphism ∆n ?∆m ∼= ∆n+m+1 induced by i 7→ min(i, n).

The identity rs = id follows from the universal property of the join Rezk
[70, Lemma 24.14] from the following observations:

1. The diagram

(S ×∆n) ?∆m (S ?∆m)×∆n (S ×∆n) ?∆m

S ?∆m

∆0 ?∆0 ∆0 ?∆0 ∆0 ?∆0

s

p1?∆m p1

r

id id

commutes.
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2. Define s0 via the pullback square

S ×∆n S ×∆n

(S ×∆n) ?∆m (S ?∆m)×∆n.

s0

y

s

Then

S ×∆n S ×∆n

(S ×∆n) ?∆m (S ?∆m)×∆n

S

S ?∆m

and

S ×∆n S ×∆n

(S ×∆n) ?∆m (S ?∆m)×∆n

∆n ∆n

∆n ?∆m ∆n

=

=

f

commute, hence s0 = id. In particular,

S ×∆n S ×∆n S ×∆n

(S ×∆n) ?∆m (S ?∆m)×∆n S ×∆n

id

y
id

y

s r

commutes.
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3. The diagram

∆m ∆m ×∆n

(S ×∆n) ?∆m (S ?∆m)×∆n

∆m

S ?∆m

commutes, hence the top arrow in

∆m ∆m ×∆n ∆m

(S ×∆n) ?∆m (S ?∆m)×∆n (S ×∆n) ?∆m

y y

s r

is the identity.

Lemma 4.29. Let C be an ∞-category, let x ∈ C0 be an object and let g
be a vertex of ((C/x)∆1

)0. Denote by g0 be the image of g under the map
((C/x)∆1

)→ C∆1. Then the canonical map

((C/x)∆1
)/g → (C∆1

)/g′

is a categorical equivalence.

Proof. The lemma holds if and only if for all marked simplicial sets S, the
canonical map

sSet+
'(S, ((C/x)∆1

)/g)→ sSet+
'(S, (C∆1

)/g
′
)

is a homotopy equivalence. By the enriched adjunctions maps for slice and
cocone, this is equivalent to showing that sSet+

'(j, C) is a weak equivalence,
where j is defined by the following pushout diagram:

∆0 ×∆1 (∆0 ×∆1) �∆0

(S �∆0)×∆1 ·

((S �∆0)×∆1) �∆0.

j

p
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Since product functors, join functors and pushouts of Reedy cofibrant spans
preserve categorical equivalences, we can equivalently show that j′ defined by

∆0 ×∆1 (∆0 ×∆1) ?∆0

(S ?∆0)×∆1 ·

((S ?∆0)×∆1) ?∆0.

j′

p

is a categorical equivalence. Categorical equivalences are stable under retracts,
hence by Lemma 4.28 it suffices to show that j′′ defined by

∆0 ×∆1 (∆0 ?∆0)×∆1

(S ?∆0)×∆1 ·

(S ?∆0 ?∆0)×∆1.

j′′

p

is a categorical equivalence. −×∆1 preserves colimits and categorical equiva-
lences, hence we further reduce to showing that j′′′ in

∆0 ∆0 ?∆0

S ?∆0 ·

S ?∆0 ?∆0

j′′′

p

is a categorical equivalence, which is an instance of Lemma 4.28.

Proposition 4.30. Let C be an ∞-category and let x : ∆0 → C be an object.

1. A cone c : ∆0 ? K = ∆0 ? K → C/x is a limit cone over c|K : K → C/x if
and only if the corresponding map c′ : ∆0 ? K ?∆0 → C is a limit cone
over c′|K?∆0 : K ?∆0 → C.
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2. A square c : ∆0 ? Λ2
2 → C/x is a pullback square in the slice over x if and

only if the composite
∆0 ? Λ2

2
c−→ C/x → C

is a pullback square.

3. A map k : Pi→ C/x is a dependent product in the slice over x if and only
if the composite

Pi
k−→ C/x → C

is a dependent product in C.

Proof. 1. Follows from the isomorphism (C/x)/k|K
∼= C/k′

|K?∆0
.

2. By point 1, c : ∆0 ? Λ2
2 → C/x is a pullback square (i.e. limit cone over

c|Λ2
2
) if and only if its transpose c′ : ∆0 ? Λ2

2 ? ∆0 → C is a limit cone over
c′|Λ2

2?∆
0 . The image of c in C can be described in terms of the transpose c′ as

the composite Λ2
2 ?∆0 → ∆0 ?Λ2

2 ?∆0 c′−→→ C. The result thus follows by Lurie
[62, Proposition 4.1.1.8] because the inclusion Λ2

2 ⊆ Λ2
2 ? ∆0 is left anodyne

and hence final. (We can obtain Λ2
2 ? ∆0 from Λ2

2 by gluing Λ1
1 ⊆ ∆1, then

Λ2
1 ⊆ ∆2, finally Λ2

0 ⊆ ∆2.)
3. The tranpose k′ : Pi ?∆0 → C of k can be depicted as a diagram

w1 · ·

y1 z1

x

g2

w
g f2

y

z

f

in C. The top two rows of this diagram, with x omitted, correspond to the
composite k′′ : Pi → Pi ? ∆0 k−→ C, or, equivalently, to the image of k under
C/x → C. By point 2, the map ∆0 ? Λ2

2 ? ∆0 → Pi ? ∆0 k′−→ U(C) is a limit

diagram if and only if ∆0 ? Λ2
2 → Pi

k′′−→ U(C) is a limit diagram. Thus k
corresponds to a vertex of (C/x)f,g if and only if k′′ corresponds to a vertex of
Cf2,g2 .

It suffices to show that (C/x)f,g → C)f2,g2 is a categorical equivalence since
categorical equivalences preserve and reflect terminal objects. Recall that
(C/x)f,g and Cf2,g2 are defined by the following pullback squares:

(C/x)f,g ((C/x)∆1
)pb
/f

(C/x)/g (C/x)/y

y
Cf2,g2 (C∆1

)pb
/f2

C/g2
C/y1

y
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The two bottom horizontal maps are fibrations, hence both squares are ho-
motopy pullback squares, so it suffices to show that the three maps on lower
cospans are categorical equivalences.

The maps (C/x)/y → C/y1
and (C/x)/f → C/f2

are categorical equivalences by
Lurie [62, Propositions 4.1.1.3 (4) and 4.1.1.8] because the inclusions ∆{1} ⊆ ∆1

and ∆{0,1} ⊆ ∆2 are left anodyne. Thus it remains to show that the map
((C/x)∆1

)pb
/f → (C∆1

)pb
/f2

is a categorical equivalence.

Note that ((C/x)∆1
)pb
/f and (C∆1

)pb
/f2

are themselves defined by a pullback
squares

(C/x)∆1
)pb
/f ((C/x)∆1

)/f

N(E) N(h(((C/x)∆1
)/f ))

(C∆1
)pb
/f2

(C∆1
)/f2

N(E ′) N(h((C∆1
)/f2

))

where E ⊆ h(((C/x)∆1
)/f ) and E ′ ⊆ h((C∆1

)/g2
) are the full subcategories

spanned by the pullback squares. Both subcategories are closed under isomor-
phisms, hence their inclusions are fibrations (of 1-categories), and the nerve
functor N is right Quillen, hence preserves fibrations. Thus the two pullback
squares of the last diagram are homotopy pullback squares, and we can again
reduce to showing that the maps on lower cospans are categorical equivalences.
Both the nerve functor N and the homotopy category functor h preserve
weak equivalences. By point 2, E → E ′ is an equivalence of 1-categories, and
((C/x)∆1

)/f → (C∆1
)/f2

is categorical equivalence by Lemma 4.29.

Lemma 4.31. 1. Let C be a fibrant lex sketch and let x : ∆0 → C be an
object of C. Then the alternative lex slice sketch C/x is fibrant.

2. Let C be a fibrant lcc sketch and let x : ∆0 → C be an object of C. Then
the alternative lcc slice sketch C/x is fibrant.

Proof. 1. We verify the conditions of Proposition 4.18. K be a finite simplicial
set and let k0 : K → U(C/x). Let c0 : (C,K, φ)→ U(C/x) for some (C,K, φ) ∈
Ilex be a potentially marked map in the alternative slice. Choose a cospan
C

j−→ C ′
f←− ∆0 ? K with j a trivial cofibration and f a categorical equivalence

such that φ = γ(f)−1 ◦ γ(j). This data induces c1 and c2 in the diagram to
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the left of the following diagrams:

C

C ′ U(C/x) U(C/x)

∆0 ? K

c0
j

c1
ψ

f c2

c3

h

C �∆0

C ′ �∆0

U(C)

(∆0 ? K) �∆0

∆0 ? K ?∆0

j�∆0 c′0

c′1

f�∆0

c′2

h′

c′3

The canonical comparison map ψ : U(C/x) → U(C/x) is a categorical equiva-
lence, ∆0 ? K is cofibrant and U(C/x) is an ∞-category. Thus γ(ψ)−1 ◦ γ(c2)
has a preimage c3 under γ, and there exists a homotopy h : ∆1 → sSet+

'(∆0 ?
K,U(C/x)) from c2 to ψ ◦ c3. The transposes of the ci along the cocone/slice
adjunctions are depicted on the right of the previous diagram. Note that
the adjunction for the alternative cocone and alternative slice is enriched,
hence the edge h : ∆1 → sSet+

'(∆0 ? K,U(C/x)) corresponds to an edge
h′ : ∆1 → sSet+

∆0/
((∆0 ?K) �∆0, U(C)). We now conclude that C/x is a fibrant

lex sketch with the equivalences

c0 is marked ⇐⇒ c′0 is marked ⇐⇒ c′3 is a limit cone
⇐⇒ c3 is a limit cone ⇐⇒ c2 is a limit cone.

2. Immediate from point 1, Proposition 4.21 and point 3 of Proposition
4.30.

Proposition 4.32. 1. Let j : A → B be a (trivial) cofibration of lex
sketches. Then j. : A. → B. and j. : A. → B. are (trivial) cofibrations
of lex sketches.

2. Let j : A→ B be a (trivial) cofibration of lcc sketches. Then j. : A. → B.

and j. : A. → B. are (trivial) cofibrations of lcc sketches.
In particular, the (alternative) cocone/slice adjunctions of Proposition 4.25

are (simplicial) Quillen adjunctions Lex� Lex∆0/ and Lcc� Lcc∆0/.

Proof. LetM be one of Lex or Lcc, and let j be a cofibration, i.e. a monomor-
phism, inM. Since both ? and � preserve cofibrations, j. and j. are cofibrations.
Now assume that j is a trivial cofibration. There is a commuting diagram

A. A.

B. B.,

∼

j. j.

∼
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in which the horizontal arrows are weak equivalences inM, hence by 2-out-of-3
it suffices to show that j. is a trivial cofibration. Thus we have to show that
the Kan fibration

M'(j., C) :M'(B., C)→M'(A., C)

is in fact a trivial Kan fibration for all fibrant sketches C. For this it suffices
to show that the fibre of M'(j., C) over every vertex a : ∆0 → M'(A., C),
which can be identified with a map a : A. → C, is contractible.

Let x : ∆0 → A. → C be the restriction of a to the cocone point. Then by
Proposition 4.25 the lower and outer rectangles in

M'(B, C/x) M'(B., C)

M'(A, C/x) M'(A., C)

∆0 M'(∆0, C)

M'(j,C/x) M'(j.,C)

x

are pullback squares, hence so is the upper square. M'(j, C/x) is a trivial
Kan fibration because j was assumed to be a trivial cofibration and C/x is
fibrant by Lemma 4.31. As p factors viaM'(A, C/x), the pullback ofM'(j., C)
along p is the pullback of a trivial Kan fibraton and hence itself a trivial Kan
fibration.

4.3 Strict ∞-categories

In this section, we consider model categories of strict (lex, lcc)∞-categories. In
contrast to the usual ∞-categories, i.e. simplicial sets with certain right lifting
properties, strict ∞-categories are equipped with canonical lifts witnessing
the lifting property. Their morphisms are those maps of simplicial sets which
preserve the witnesses up to equality; usually maps of simplicial sets will
preserve such witnesses only up to contractible homotopy. Surprisingly, the
model categories of strict ∞-categories we consider are Quillen equivalent to
the model categories of sketches, and in particular present the same higher
category.

The technical tool for defining our model categories of strict ∞-categories
is the formalism of algebraic weak factorization systems and algebraic fibrancy,
which applies to general accessible model categories. This is the topic of
Subsection 4.3. In Subsection 4.3 we then go on to show that the model
category of strict lex (or lcc) ∞-categories admits the structure of a model of
dependent type theory with weak intensional identity types and weak finite
product types. Finally, in Subsection 4.3, we show that the slice functors on
sketches can be extended to functors on strict ∞-categories.
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Simplicial-algebraically fibrant objects

Here we shall adapt the notion of algebraically fibrant object in a model category
to the simplicially enriched setting. Let C be a combinatorial category and let
J be a set of morphisms in C. Recall that J cofibrantly generates an algebraic
weak factorization system [15] (L,R) via Garner’s small object argument. L
is a comonad on the arrow category C→ while R is a monad on C→. L and R
assign to maps f : X → Y functorial factorizations

E(f)

X Y

R(f)

f

L(f)

such that R(f) has the right lifting property with respect to J and L(f) has
the left lifting property with respect to all morphisms with the right lifting
property against J .

The category R−Alg of algebras over the monad R can be described
equivalently as the category Jt of morphisms with J-lifting operations. The
objects of Jt are pairs (f, `f ), where f : X → Y is a map in C and `f is an
operation assigning to commuting squares

A X

B Y

a

J3j f

b

`f (a,b) (4.10)

with j : A→ B in J a diagonal lift `f (a, b) as indicated.
R restricts to a monad ROb on morphisms with terminal codomain, i.e. to a

monad on C. By the characterization of R-Alg as Jt, the category of algebras
over ROb can be described as given by objects X with operations `X assigning
solutions to lifting problems

A X

B.

a

J3j
`X(a)

(4.11)

If C =M is a combinatorial model category and J is a set of generating trivial
cofibration, then ROb−Alg = Alg(M) is known as category of algebraically
fibrant objects [66]. Where fibrant objects in M are objects for which lifts
as in (4.11) merely exist and are preserved under morphisms in M only up
to contractible homotopy, the algebraically fibrant objects are equipped with
canonical choices of lifts, and their morphisms preserve lifts up to equality. The
forgetful functor G : Alg(M)→M has a left adjoint F . It can be shown that
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1. Alg(M) carries the structure of a model category such that G preserves
and reflects weak equivalences and fibrations,

2. (F,G) is a Quillen equivalence, and

3. the components ηX : X → G(F (X)) are trivial cofibrations for all X in
M.

Thus Alg(M) can be seen as a more algebraic presentation of the higher
category presented byM in which all objects are fibrant.

It is shown in Bidlingmaier [10, Lemma 17] that ifM is a groupoidal model
category (i.e. enriched as model category over the category of groupoids with
its canonical model category structure), then Alg(M) is groupoidal. One takes
as groupoids of maps (X, `X)→ (Y, `Y ) the full subgroupoid of maps X → Y
spanned by the morphisms of algebraically fibrant objects. This, however, does
not transfer to the simplicially enriched case, where one would take the full
simplicial subset spanned by the vertices corresponding to maps of algebraically
fibrant objects. With this definition, it is not clear how one defines simplicial
powers. This mismatch between the groupoidal and simplicial cases arises
because certain lifts exist uniquely in the 2-truncated groupoidal case but not
in the simplicial case.

The solution to this problem is to adapt the 1-categorical definitions of
the algebraic weak factorization system (L,R) and the J-lifting operations.
Indeed, under suitable conditions on a V-enriched category C, Garner’s small
object argument can be generalized to the enriched setting, resulting in a
V-enriched comonad L and V-enriched monad R. In the 1-categorical case,
lifting operations as in (4.10) on a morphism f : X → Y can be described as
sections to the canonical maps

Hom(B,X)→ Hom(A,X)×Hom(A,Y ) Hom(B, Y ) = HomC→(j, f)

on hom-sets for all j : A → B in J , hence the natural generalization to the
enriched setting is to demand a section to the map

C(B,X)→ C(A,X)×C(A,Y ) C(B, Y ) = C→(j, f)

in V. We denote the resulting category of maps equipped with V-enriched
lifting operations by Jt. As in the unenriched setting, the categories (R−Alg)0

of algebras over R and (Jt)0 are equivalent (in fact, isomorphic) as 1-categories.
Note that R is a monad enriched over V, hence R−Alg is naturally V-

enriched. Riehl conjectures [71, Remark 13.4.3] that Jt admits V-enrichment
as follows. Consider first for fixed j ∈ J and (f, `f ), (g, `g) ∈ Jt the (non-
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commutative) diagram

C→(j, g)

C→(j, f)× C→(f, g) C(j1, g0)

C(j1, f0)× C(f0, g0)

induced the enriched lifting operations `f : C→(j, f) → C(j1, f0) and `g :
C→(j, g) → C(j1, g0). Here h 7→ h0 denotes the domain functor C→ → C
and h 7→ h1 denotes the codomain functor. Taking transposes along the
product/exponential adjunction with C→(f, g) and the product over all j ∈ J ,
we obtain two maps

C→(f, g)⇒
∏
j∈J
V(C→(j, f), C(j1, g0)). (4.12)

Riehl proposes to define the mapping object Jt(f, g) as equalizer of this
diagram, and conjectures that the resulting V-enriched category is isomorphic
to R−Alg, extending the isomorphism of underlying categories. This is indeed
the case, and the proof is our first goal in this section.

Proposition 4.33. The hom-objects defined as equalizers of (4.12) are closed
under identities and composition in C→, so that Jt can be regarded as enriched
category.

Proof. Closure under identities is clear. Let f, g, h ∈ Ob Jt, and let j ∈ J .
Closure under compositions follows after taking transposes along the product/-
exponential adjunction from the commutativity of

C→(j, f)× C→(f, h) C→(j, h)

C→(j, g)× Jt(g, h) C(j1, g0)× C(g0, h0)

C→(j, f)× Jt(f, g)× Jt(g, h) C(j1, h0)

C(j1, f0)× C(f0, g0)× C(g0, h0) C(j1, f0)× C(f0, h0)

C→(j, f)× C→(f, h)
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Lemma 4.34. Let X ∈ ObV and let (g, `g) ∈ Ob Jt. Then the power gX in
C→ admits Jt-structure `gX , and the natural isomorphisms

V(X, C→(f, g)) ∼= C→(f, gX)

for all morphisms f in C restrict to natural isomorphisms

V(X, Jt((f, `), (g, `g))) ∼= Jt((f, `), (gX , `gX )).

for all (f, `f ) ∈ Ob Jt.

Proof. We define a lifting structure `gX on gX via natural maps

Hom(Y, C→(j, gX))
∼= Hom(Y ×X, C→(j, g))

→ Hom(Y ×X, C→(j1, g0))

∼= Hom(Y, C→(j1, (g0)X))

∼= Hom(Y, C→(j1, (g
X)0))

for all Y ∈ ObV and the Yoneda lemma.
We use again the Yoneda lemma to show that the universal property of

gX restricts to a universal property of (gX , `gX ). Thus let (f, `X) ∈ Ob Jt, let
j ∈ J and let Y → C→(f, gX). Then

C→(j, gX)

C→(j, f)× Y C→(j1, (g0)X)

C(j1, f0)× C(f0, (g
X)0)

`
gX

commutes if and only if

C→(j, g)

C→(j, f)× Y ×X C→(j1, g0)

C(j1, f0)× C(f0, g0)

`g

commutes if and only if

Y ⇒ V(X,V(C→(j, f), C→(j1, g0)))

commutes. Since V(−,−) commutes with limits in the second argument, it
follows that Y → C→(f, gX) is valued in Jt((f, `f ), (gX , `gX )) if and only if
Y → V(X, C→(f, g)) is valued in V(X, Jt((f, `f ), (g, `g))).
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Proposition 4.35. The canonical isomorphism (R−Alg)0
∼= (Jt)0 of under-

lying 1-categories extends to an isomorphism of R−Alg ∼= Jt of V-enriched
categories.

Proof. Recall that the map (R−Alg)0 → (Jt)0 of underlying 1-categories is
given on R-Algebras rf : R(f)→ f by endowing them with lifts according to
the diagram

· ·

E(j) E(f)

· ·

L(j)

j

a

f
E(a,b)

R(f)

rf

b

cj

for all j ∈ J . Here E denotes the composite of R : C→ → C→ with the domain
functor C→ → C, or, equivalently, the composite of L with the codomain functor.
cj : j → L(j) denotes the canonical L-comonad structure on j ∈ J . Since
(L,R) is an enriched weak factorization system, enriched lifting functions on f
can be constructed similarly as composite

C→(j, f) C(E(j), E(f)) C(j1, f0),
rf◦−◦cj

which defines the isomorphism (R−Alg)0
∼−→ (Jt)0.

Similarly to the powers in Jt due to Lemma 4.34, the powers (g,mg)
X =

(gX ,mgX ) of R-algebras (g,mg) are given by a pointwise construction via the
Yoneda lemma. It follows that the functor (R−Alg)0 → (Jt)0 preserves powers.
We can thus extend this 1-categorical functor to a V-enriched functor via the
Yoneda lemma from the isomorphisms

Hom(X,R−Alg((f,mf ), (g,mg)))

∼= HomR−Alg((f,mf ), (gX ,mgX ))

∼= HomJt((f, `f ), (gX , `gX ))

∼= Hom(X, Jt((f, `f ), (g, `g)))

where `f and `g are the enriched J-lifting structures induced by R-algebra
structure mf and mg, and X is an arbitrary object of V.

Definition 4.36. Let M be a combinatorial model V-category, and let J
be set of trivial cofibrations in M. The category AlgJ(M) of algebraically
(partially) fibrant objects with respect to J is the full subcategory of Jt given
by the morphisms X → 1 to a terminal object with simplicially enriched lifting
operation against all j ∈ J . We denote the resulting adjunction of V-categories
by F :M�: AlgJ(M) : G.

If J is not specified, then Alg(M) = AlgJ(M) denotes the category of
algebraically fibrant objects with respect to a set J of trivial cofibrations fixed
once and for all forM such that
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• J is set of representatives under isomorphism of trivial cofibrations
j : A→ B with κ-small domain and codomain for some infinite cardinal
κ, and

• J is a set of generating trivial cofibration.

The category AlgJ(M) as defined here for combinatorial enriched model
categoriesM should not be confused with the notion considered in Nikolaus
[66] or Bourke [14]: There, M is not enriched, and consequently AlgJ(M)
is defined in terms of Jt instead of Jt. Furthermore, we allow J to be an
arbitrary set of trivial cofibrations, whereas otherwise J is assumed to be a
generating set of trivial cofibrations. In our instantiations of Definition 4.36,
however, J is always a generating set.

Note that, by Proposition 4.35, the objects of AlgJ(M) can equivalently be
described as objects X ofM equipped with R-algebra structure on the unique
map X → 1 to a terminal object.

Lemma 4.37. Let M be a combinatorial model category and let F : M �
N : G be an adjunction with a locally presentable category N . Suppose the
following holds:

1. For every object X in N , there exists a morphism ηX : X → R(X) such
that G(ηX) is a weak equivalence and G(R(X)) is fibrant.

2. For every morphism f : X → Y , there exists a morphism R(f) : R(X)→
R(Y ) such that

X Y

R(X) R(Y )

f

ηX ηY

R(f)

commutes.

3. For every object X in N there exists a factorization

R(X) Path(R(X)) R(X)×R(X)
p g

of the diagonal R(X)→ R(X)×R(X) such that R(p) is a weak equivalence
and R(g) is a fibration.

Then the right-induced model structure on N exists. N is a combinatorial model
category, and if I is a set of generating cofibrations and J is a set of generating
trivial cofibrations inM, then F (I) and F (J) are generating sets of (trivial)
cofibrations for N .

Proof. Because N is a locally presentable category, the images of sets of
generating (trivial) cofibrations generate weak factorization systems on N . The
right-induced model structure on N then exists by an argument dual to that
in the proof of Hess et al. [37, Theorem 2.2.1].
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The following is inspired by Bourke [14, Theorem 19], which deals with
the unenriched case. Note that where Bourke has to resort to a “highly non-
functorial path object”, simplicial enrichment grants us a highly functorial path
object instead.

Proposition 4.38. LetM be a combinatorial model sSet+-category, and let
J be a set of trivial cofibrations inM. Then the model category structure of
M can be transferred to AlgJ(M), endowing AlgJ(M) with the structure of
a combinatorial model sSet+-category structure. The unit X → G(F (X)) is a
trivial cofibration for all X inM, and (F,G) is a Quillen equivalence.

Proof. Let J ′ ⊇ J be a superset of trivial cofibrations that is furthermore
generating. We then have a triangle of V-adjoint functors

AlgJ(M)

M AlgJ ′(M)

F ′

G

F

F ′′
G′

G′′

where G′ denotes the evident forgetful functor, by the adjoint functor theorem.
We verify the conditions of Lemma 4.37. Set R(X) = G′(F ′(X)) and

η : X → G′(F ′(X)) = R(X) as unit of the adjunction. Since every object
in the image of G′′ is fibrant and GR = G′′F ′, 1 is satisfied, and 2 holds by
functoriality of G′F ′ and naturality of η.

For 3 we take as proposed path object the power Path(R(X)) = R(X)(∆1)]

in AlgJ(M). The maps ∂∆1 → ∆1 → ∆0 of simplicial sets induce a sequence

R(X) Path(X) R(X)×R(X)

which is mapped to

G′′(F ′(X)) G′′(F ′(X))(∆1)] G′′(F ′(X))×G′′(F ′(X))

under G (which, as a right adjoint, preserves products and powers). G′′(F ′(X))
is fibrant, so this sequence constitutes the canonical path object induced by the
simplicial model structure onM, which proves 3. Thus the right-transferred
model structure on AlgJ(M) exists. Since G preserves limits and powers and
reflects weak equivalences and fibrations, it follows that AlgJ(M) satisfies the
pullback power axiom, hence has the structure of a model sSet+-structure.

Now let us show that that the unit ηA : A→ G(F (A)) of the adjunction
F a G is indeed a trivial cofibration for all A inM. Let

A X

G(F (A)) Y

ηA f (4.13)
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be a commuting square with f a fibration. Denote by (L,R) the sSet+-enriched
functorial factorization system produced by Garner’s small object argument, so
that AlgJ(M) is equivalent to the full subcategory of R-algebras with terminal
codomain. f has the right lifting property against all trivial cofibrations and in
particular against J , hence by Riehl [71, Lemma 13.3.6], f also has the enriched
right lifting property against J , and thus admits R-algebra structure. ηA, on
the other hand, is the cofree L-coalgebra over A→ 1; in particular, it admits
L-coalgebra structure. Since L-coalgebras have the left lifting property with
respect to R-algebras, it follows that the lifting problem (4.13) has a solution.

To show that (F,G) is a Quillen equivalence, it suffices to show that the
components of unit η and counit ε of the adjunction are weak equivalences.
We have already shown the components of the unit to be weak equivalences.
Let X be an object of AlgJ(M). By one of the triangle equalities, we have a
commuting triangle

G(F (G(X)))

G(X) G(X),

G(εX)ηG(X)

=

hence by two-out-of-three, G(εX) is a weak equivalence inM. By definition of
right transferred model structures, it follows that εX is a weak equivalence in
AlgJ(M).

Strict ∞-categories

From the formalism of algebraically fibrant objects explained in the previous
section, we obtain a diagram

sSet+ Lex Lcc

sCat sLex sLcc

of left Quillen functors which commutes up to isomorphism. sCat is the
category of strict ∞-categories, sLex the category of strict lex ∞-categories
and sLcc the category of strict lcc ∞-categories. All model categories and
functors are simplicial, and for all but Lcc and sLcc the simplicial structure is
obtained by change of base along Core : sSet+ → sSet of a sSet+-enrichment.
sCat = Alg(sSet+) and sLex = Alg(Lex) are the algebraically fibrant (and
sSet+-enriched) objects of sSet+ and Lex, respectively. The definition of sLcc
is more subtle: Since Lcc is only sSet-enriched, but not sSet+-enriched, we can
instantiate the algebraically fibrant object formalism only for the simplicial
enrichment, but then there is no evident right Quillen functor Alg(Lcc) →
Alg(Lex).
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Instead sLcc is defined as follows. Let i′ be the inclusion of the discrete
category I ′Lcc = (Ilcc \ Ilex)[ ⊆ Lex. Then there is a canonical isomorphism of
categories (sSet+)Ilcc ∼= Lexi

′
. Let Wlcc be the family of morphisms in Lexi

′

corresponding to the morphisms jΛ2
2

Π , jnΠ,
−→
f and

−→
f in (sSet+)Ilcc described in

Definition 4.13.
Then the model structures of the left Bousfield localization (Wlcc)

−1Lexi
′

corresponds to that of Lcc under the isomorphism (sSet+)Ilcc ∼= Lexi
′
. We

obtain a diagram

Lex sLex

Lexi
′

sLexFi
′

Lcc W−1Lexi
′

(F i
′
(W ))−1(sLexFi

′
)

F

[ [

F i
′

= W−1(F i
′
)

of left Quillen functors in which the horizontal functors are Quillen equivalences:
By Proposition 4.38, F is a Quillen equivalence, which implies by 4.7 that
F i
′ is a Quillen equivalence, which then implies by Hirschhorn [39, Theorem

3.3.20] that W−1(F i
′
) is a Quillen equivalence because every map W is a set

of cofibration, hence so is F i′(W ). Now sLcc is given by the model category
Alg((F i

′
(W ))−1sLexFi

′
) of algebraically fibrant objects with respect to the

simplicial (but not marked simplicial) enrichment.
Note that the definition of a strict lcc category is somewhat redundant, in

that for some trivial cofibrations more than one canonical lift is available: Let
Γ be a strict lcc category and let j : A → B be a small trivial cofibration in
Lex. Then the solution b to a lifting problem

A[ G(Γ)

B[

j[

a

b

in Lcc induced by the structure of an algebraically fibrant object of (F i
′
(W ))−1(sLexFi

′
)

will generally not correspond to the canonical solution b′ of the lifting problem

A G(U(G(Γ)))

B

j

a

b′

in Lex which is induced by the image of Γ under sLcc
G−→ sLexFi

′ U−→ sLex.
In practice, whenever we pick the “canonical” lift for which this ambiguity is
possible, either one of the constructions can be used, but the choice must be
the same for all Γ so as to be natural in Γ.
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Definition 4.39. Let Γ be a strict lcc category. A type σ in Γ, denoted by
Γ ` σ, is an object σ ∈ U(G(Γ))0 of the underlying ∞-category of Γ. A term
s of type σ, denoted by Γ ` s : σ, is a morphism s : t → σ in Γ, where
t ∈ U(G(Γ))0 is a terminal object given by the canonical lift against the finite
trivial cofibration j0

lim ∅. (Recall that the domain of j0
lim ∅ is the empty sketch

and that the domain is the freestanding terminal object.)
If f : Γ → ∆ is a strict lcc functor, then the covariant substitutions

Γ ` f(s) : f(σ) are defined by application of f to underlying objects and
morphisms of Γ.

Lemma 4.40. The covariant cwf sLcc supports an empty context and context
extensions.

Proof. sLcc is a locally presentable category and in particular cocomplete. In
particular, it has an initial object, i.e. an empty context.

Denote by {t, x} the sketch given by two freestanding objects t, x, of which
t is marked as terminal object, and let {k : t→ x} be the freestanding sketch
over the edge ∆1 in which the vertex ∆{0} = t is marked as terminal. There is
an evident inclusion {t, x} ⊆ {k : t→ x}. Then terms Γ ` s : σ are in bijection
to maps {k : t→ x} → G(Γ) which map t to 1 and x to σ. Consequently,

F ({t, x}) F ({k : t→ x})

Γ Γ.σ

〈1,σ〉
p

(4.14)

defines a context extension by some type Γ ` σ. Here 〈1, σ〉 is induced by the
adjunction F a G from the map 〈1, σ〉 : {t, x} → G(Γ) that maps t to 1 and x
to σ. The variable term Γ.σ ` v : p(σ) is given by the image of k in Γ.σ.

Weak identity types

Definition 4.41. A covariant cwf C with context extensions supports weak
identity types if it interprets the following type and term constructors:

Γ ` s1 : σ Γ ` s2 : σ

Γ ` Id s1 s2

Γ ` s : σ

Γ ` refl s : Id s s

Γ.(v1 : σ).(v2 : σ).(r : Id v1 v2) ` τ Γ.(u : σ) ` t : 〈u, u, reflu〉(τ)

Γ.(v1 : σ).(v2 : σ).(r : Id v1 v2) ` indId r t : τ

Γ.(v1 : σ).(v2 : σ).(h : Id v1 v2) ` τ Γ.(u : σ) ` t : 〈u, u, reflu〉(τ)

Γ.(u : σ) ` evId τ t : Id (〈u, u, reflu〉(indId h t)) t

Here 〈u, u, reflu〉 : Γ.(v1 : σ).(v2 : σ).(h : Id v1 v2)→ Γ.(u : σ) is induced by the
projection p : Γ→ Γ.(u : σ) and the mappings v1 7→ u, v2 7→ u and h 7→ reflu.
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Note that the last term constructor evId τ t is a propositional version of the
usual computation rule.

Definition 4.42. The freestanding pair of parallel morphisms is given by
P = ∆1 q∂∆1 ∆1.

Definition 4.43. Let Γ be a strict lex ∞-category, let Γ ` σ be a type in
context Γ and let Γ ` s1 : σ and Γ ` s2 : σ be terms of type σ. s1 and s2

induce an evident map 〈s1, s2〉 : P = U(A0
limP )→ U(G(Γ)). The identity type

Γ ` Id s1 s2 is the cone point of the map LimP = ∆0?P = U(B0
limP )→ U(G(Γ))

defined via the following canonical lift:

A0
limP G(Γ)

B0
limP

j0limP

Lemma 4.44. Let Arefl and Brefl be the lex sketches defined as follows. U(Arefl) =
∆2 is the freestanding 2-simplex. The map LimP = ∆0 ? P � ∆{0} ?∆{1,2} =
U(Arefl) given by collapsing the two non-trivial edges of P onto ∆1 is marked
as equalizer diagram. U(Brefl) = ∆3/∆{0,2} is the quotient of ∆3 given by
collapsing the edge ∆{0,2} to a single vertex point. The markings of Brefl are
minimal such that the map U(Arefl) ∼= ∆{1,2,3} � U(Brefl) preserves markings.
Then Arefl → Brefl is a trivial cofibration of lex sketches.

Proof. Consider the marking-preserving map U(A1
LimP ) = ∂∆1 ? P → U(A)

defined as follows: Its restriction to ∆{1} ? P is the marked cone ∆0 ? P �
∆{0} ?∆{1,2} = U(A) of A. The image of ∆{0} ? P is given by the composite

∆0 ? P � ∆0 ?∆1 = ∆2 � ∆{1,2} ↪→ ∆2 = U(A),

i.e. the degenerated cone on the edge ∆{1,2}. Now A→ B can be obtained as
pushout

A1
limP B1

limP

A B
p

of the trivial cofibration j1
limP .

Definition 4.45. Let Γ ` s : σ be a term. The identity type Id s s induces
a map Arefl → Brefl. The reflexivity term Γ ` refl s : Id s s is the image of
∆{0,1} → Brefl under the canonical lift Brefl → G(Γ) of Arefl → G(Γ) against
the trivial cofibration Arefl → Brefl.
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Lemma 4.46. Let k1, k2 : x → y be a parallel pair of morphisms in a strict
∞-category Γ. Then there are functions H1 � H2, where H1 is the set of
diagrams of the form as on the left of

x x x

y
k1

==

k2

x x

y y

=

k1 k2

=

and H2 is the set of diagrams as on the right. Moreover, the maps H1 � H2

can be constructed naturally in (Γ, k1, k2).

Proof. Let us construct the map H1 → H2. For this it suffices to construct
from a 2-simplex as on the left a 2-simplex as on the right:

x x

y
k1

k̃

= x

y y

k1
k̃

=

Given a 2-simplex as on the left, consider the (3, 1)-horn whose 1-skeleton can
can be depicted as follows:

y

x

x y

k̃

k1

k1

k1

(4.15)

The first face of a filler of this horn is a 2-simplex of the desired shape.
Next let us construct the map H2 → H1. Dually to the previous case, it

suffices to construct from a 2-simplex as on the right of (4.3) a 2-simplex as
on the left of (4.3). Given a simplex as on the right, we obtain a (3, 2)-horn
whose 1-skeleton can again be depicted as (4.15), and the second face of a filler
of this (3, 2)-horn has the desired form.

Lemma 4.47. Let Aidtm and Bidtm be the lex sketches defined as follows. The
underlying simplicial set of Aidtm is the quotient of ∆0 ? ∆0 q∆0 ∆0 ? P in
which the start point ∆0 → ∆0 ?∆0 in the left component of the amalgamation
is collapsed onto the start point ∆{0} → P → ∆0 ? P in the right component.
LimP = ∆0 ? P → U(Aidtm) is marked as equalizer, and the start vertex
Lim∅ = ∆{0} → P of the two edges of P is marked as terminal. The underlying
simplicial set U(Bidtm) of Bidtm is the quotient of ∆0 ? ∆0 ? P in which the
edge from the vertex in the left component of the threefold join to the start
point of the two edges in P in the third component is collapsed onto a point.
There is an evident map U(Aidtm) → U(Bidtm), and the markings of Bidtm

are minimal such that this map preserves markings. Then Aidtm → Bidtm is a
trivial cofibration of lex sketches.
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Proof. Consider the diagram

A2
Lim ∅ B2

Lim ∅

A2
Lim ∅/∆

{0,2} B2
Lim ∅/∆

{0,2}

∆0 ?∆0 q∆0 ∆0 ? P Aidtm A′

∆0 ?∆0 ? P B′ Bidtm

∼

∼

of pushout squares. Here the map A2
lim ∅/∆

{0,2} is given on the second face by
∆{0,1} ∼= ∆0 ? ∆0 → U(Aidtm), on the zeroth face by ∆{1,2} ∼= ∆0 ? ∆{0} →
∆0 ? P → U(Aidtm) and on the first face by the degenerated edge on either of
the two collapsed points of U(Aidtm). B′ agrees with Bidtm except that the
edge that is collapsed in Bidtm is a nontrivial loop.

Since trivial cofibrations are stable under pushouts, the lower right square
is composed entirely of trivial cofibrations. By stability under composition,
then, Aidtm → A′ → Bidtm is a trivial cofibration.

Lemma 4.48. Let Γ ` σ be a type in a lex category Γ. Set Γ.v1.v2.h =
Γ.(v1 : σ).(v2 : σ).(h : Id v1 v2) and Γ.u = Γ.(u : σ). Let r = 〈pΓ.u, u, u, reflu〉 :
Γ.v1.v2.h→ Γ.u be induced by the reflexivity term on u, and let i = 〈pΓ.v1.v2.h, v1〉 :
Γ.u→ Γ.v1.v2.h.

1. r is a strong homotopy retract with section i, i.e. there exists a map
φ : Γ.v1.v2.h→ (Γ.v1.v2.h)∆1 such that Γ.u

i−→ Γ.v1.v2.h
φ−→ (Γ.v1.v2.h)∆1

factors via the constant homotopy Γ.u→ (Γ.u)∆1 and the two projections
of φ satisfy the equations id∆{0} ◦ φ = i ◦ r and id∆{1} ◦ φ = id.

2. There exists a map ψ : Γ.v1.v2.h → (Γ.v1.v2.h)∆1×∆1 such that Γ.u
i−→

Γ.v1.v2.h
ψ−→ (Γ.v1.v2.h)∆1×∆1 factors via the constant cube map Γ.u→
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(Γ.u)∆1×∆1 and the faces of ψ satisfy the following equations:

Γ.v1.v2.h (Γ.u)∆1×∆1

(Γ.v1.v2.h)∆1
(Γ.u)∆1×∆{0}

φ

ψ

r∆1

Γ.v1.v2.h (Γ.u)∆1×∆1

Γ.u (Γ.u)∆1×∆{1}

r

ψ

const

Γ.v1.v2.h (Γ.u)∆1×∆1

Γ.u (Γ.u)∆{ε}×∆1

r

ψ

const

ε ∈ {0, 1}

Moreover, φ and ψ can be constructed so as to vary naturally in (Γ, σ).

Proof. 1. Our strategy is to use the universal property of the context extension
Γ.v1.v2.h with the base map Γ → Γ.v1.v2.h → (Γ.v1.v2.h)∆1 induced by the
constant homotopy. To define images for the variables, we construct a diagram
in ∆1 ⊗Bidtm → U(G(Γ.v1.v2.h)) which can be depicted as follows:

1 1

Id v1 v1 Id v1 v2

1 1

σ σ

=

refl v1

=

h

=

=

v1 v1 v1 v2

=

(4.16)

Note that some composite edges are omitted. The left-hand side of the diagram,
i.e. the image of ∆{0} ⊗Bidtm, is given by the definition of the reflexivity term,
while the right-hand side is induced by the term h and Lemma 4.47. Now let
us define the image of the two lower squares:

1 1

σ σ

=

v1 v1

=

1 1

σ σ

=

v1 v2

=

(4.17)

For the left square we pick the degenerated square at v1. As for the right
square, observe that the image of ∆{1} ⊗Bidtm contains a subdiagram of the
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form

1 1 1

σ.
v1

= =

v2

By Lemma 4.46, we obtain a square as on the right of (4.17) from this.

The two squares define a pair of terms in (Γ.v1.v2.h)∆1 . We can thus
define φ(v1) as the left square and φ(v2) as the right square of (4.17). Taking
the canonical equalizer in (Γ.v1.v2.h)∆1 of φ(v1 and φ(v2), we obtain a map
∆1 ⊗ Aidtm ∪ ∂∆1 ⊗ Bidtm → Γ.v1.v2.h. Extending this along the pushout
product of ∂∆1 ⊆ ∆1 with Aidtm → Bidtm, we obtain a diagram ∆1⊗Bidtm →
U(G(Γ.v1.v2.h)) of the form (4.16) as desired.

This diagram contains a square

1 1

Id v1 v1 Id v1 v2

=

refl v1 h

which we take to define φ(h). By construction, φ is indeed a homotopy from ir
to the identity on Γ.v1.v2.h.

2. Our conditions on the projections of ψ are equivalent to ψ being a
solution to the following lifting problem:

Γ.u (Γ.u)∆1×∆1

Γ.v1.v2.h (Γ.u)∂(∆1×∆1)

ψ (4.18)

Note that context extensions are obtained by pushouts along the cofibration
F ({t, x} → {k : t→ x} as in (4.14). Thus i : Γ.u→ Γ.v1.v2.h is a cofibration.
Because of 1, it is in fact a trivial cofibration. Since ∂(∆1 ×∆1)→ ∆1 ×∆1

is a monomorphism of simplicial sets, Γ∆1×∆1 → Γ∂(∆1×∆1) is fibration. Thus
the lift ψ as in (4.18) exists. We are not done yet, however, because we claimed
that ψ can be constructed naturally in (Γ, σ). Fix a choice of ψ for Γ = F ({x})
the free strict lcc ∞-category over a single object x and σ = x. For arbitrary
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Γ ` σ we find a commuting cube which can be depicted as follows:

Γ.u (Γ.u)∆1×∆1

F ({x}).u (F ({x}).u)∆1×∆1

Γ.v1.v2.h (Γ.u)∂(∆1×∆1)

F ({x}).v1.v2.h (F ({x}).u)∂(∆1×∆1)

The left face is a pushout square. From this and the fixed chosen lift for the
front face we obtain a lift for the back face. Because the commuting cubes vary
naturally in (Γ, σ), so do the lifts for the back faces.

Proposition 4.49. The cwf sLcc supports weak identity types.

Proof. The identity type Γ ` Id s1 s2 was constructed in Definition 4.43, and
the reflexivity term Γ ` refl s : Id s s was constructed in 4.45.

Recall the retraction-section pair r : Γ.v1.v2.h� Γ.u : i and the homotopy
φ : ir ' id of Lemma 4.48. Let Γ.v1.v2.h ` τ and Γ.u ` t : r(τ). We define the
induction term Γ.v1.v2.h ` indId τ t : τ as edge ∆{0,2} of the filler for the inner
horn

i(r(τ))

1 τ.

φ(τ)i(t)

indId τ t

(4.19)

in Γ.v1.v2.h.
Next let us interpret the evaluation term Γ.u ` evId τ t : Id r(indId τ t) t.

The homotopy ψ of Lemma 4.48 and the definition of the induction term define
a diagram ∆1⊗Λ2

1 ∪∂∆1⊗∆2 → U(G(Γ.U)) which can be depicted as follows:

r(τ)

1 r(τ)

r(τ)

1 r(τ)

=t

t

r(φ(τ))t

r(indId τ t)
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Note that i is a section to r. The left square is degenerated at t, and the right
square is ψ(τ). The back triangle is degenerated while the front triangle is the
image of (4.19) under r. From the lower square of a an extension to a diagram
∆1 ⊗∆2 → U(G(Γ.u)) and Lemma 4.46 we obtain a diagram which can be
depicted as follows:

1 1 1

r(τ)

r(indId τ t)

==

t

This diagram and the identity type Id r(indId τ t) t define a map A1
limP →

G(Γ.u), which we may extend to B1
limP . We have U(B1

limP ) = ∆1 ? P , and the
restriction of B1

limP → G(Γ.u) to ∆1 → ∆1 ? P defines the evaluation term
Γ.u ` evId τ t : Id r(indId τ t) t.

Weak product types

Definition 4.50. A covariant cwf C with context extensions supports weak
product types if it interprets the following type and term constructors:

Γ ` σ1 Γ ` σ2

Γ ` Prodσ1 σ2

Γ ` s1 : σ1 Γ ` s2 : σ2

Γ ` pair s1 s2 : Prodσ1 σ2

Γ.(u : Prodσ1 σ2) ` τ Γ.(v1 : σ1).(v2 : σ2) ` t : 〈pair v1 v2〉(τ)

Γ.(u : Prodσ1 σ2) ` indProd τ t : τ

Γ.(u : Prodσ1 σ2) ` τ Γ.(v1 : σ1).(v2 : σ2) ` t : 〈pair v1 v2〉(τ)

Γ.(v1 : σ1).(v2 : σ2) ` evProd τ t : Id (〈pair v1 v2〉(indProd τ t)) t

Definition 4.51. Let Γ be a strict lex ∞-category, and let Γ ` σ1 and Γ ` σ2

be types in context Γ. σ1 and σ2 induce a map 〈σ1, σ2〉 : ∆0 q∆0 → G(Γ).

1. The product type Γ ` Prodσ1 σ2 is the cone point of the map Lim∆0q∆0 =
∆0 ? (∆0 q∆0)→ G(Γ) defined via the canonical lift against j0

lim ∆0q∆0 .

2. Let Γ ` u : Prodσ1 σ2 be a term of the product type. The projection
terms Γ ` π1 u : σ1 and Γ ` π2 u : σ2 are defined via the lift of the map
∆0 ?∆0 ∪∆0 ? (∆0 q∆0)→ G(Γ) induced by u and the definition of the
product type against the trivial cofibration ∆0 ?∆0 ? (∆0 q∆0):

1

Prodσ1 σ2

σ1 σ2

π1 u u π2 u
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3. Let Γ ` s1 : σ1 and Γ ` s2 : σ2 be terms. The pair term Γ ` pair s1 s2 :
Prodσ1 σ2 is defined by the canonical lift of the map A1

lim ∆0q∆0 → G(Γ)
induced by s1, s2 and the product type Prodσ1 σ2 against the trivial
cofibration j1

lim ∆0q∆0 :

1

Prodσ1 σ2

σ1 σ2

s1 pair s1 s2 s2

Lemma 4.52. Let Γ ` σ1 and Γ ` σ2 be types in a strict lcc ∞-category Γ.
Denote by Γ.v1.v2 = Γ.(v1 : σ1).(v2 : σ2) the context extension by variables of
type σ1 and σ2, and denote by Γ.u = Γ.(u : Prodσ1 σ2) the context extension
by a variable of the product type. Let f = 〈pΓ.u, π1 u, π1 u〉 : Γ.v1.v2 → Γ.u and
g = 〈pΓ.v1.v2 ,pair v1 v2〉 : Γ.u→ Γ.v1.v2.

1. g and f are homotopy inverse relative to Γ. Thus there exists a map
φ : Γ.v1.v2 → (Γ.v1.v2)∆1 under Γ such that the diagrams

Γ.v1.v2 Γ.u

(Γ.v1.v2)∆1
Γ.v1.v2

f

φ g

id∆{0}

Γ.v1.v2 Γ.v1.v2

(Γ.v1.v2)∆1

φ

id

id∆{1}

commute, and, dually, there exists a map ψ : Γ.u → (Γ.u)∆1 under Γ
such that the diagrams

Γ.u Γ.v1.v2

(Γ.u)∆1
Γ.u

g

ψ g

id∆{0}

Γ.u Γ.u

(Γ.u)∆1

ψ

id

id∆{1}

commute.

2. There exists a map ε : Γ.u→ (Γ.v1.v2)∆2 under Γ such that the diagrams

Γ.u (Γ.u)∆1

(Γ.v1.v2)∆2
(Γ.v1.v2)∆1

ε

ψ

g∆1

id∆{0,1}

Γ.u Γ.v1.v2

(Γ.v1.v2)∆2
(Γ.v1.v2)∆1

ε

g

φ

id∆{0,2}

Γ.u Γ.v1.v2

(Γ.v1.v2)∆2
(Γ.v1.v2)∆1

ε

g

const

id∆{1,2}
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commute. (This is the up-to-homotopy version of one of the triangle
equalities.)

Proof. 1. We construct φ and ψ using the universal property of the context
extensions Γ.v1.v2 and Γ.u, starting with φ. v1 and v2 are part of the diagram

1

σ1 × σ2

σ1 σ2

pair v1 v2v1 v2

(4.20)

while the image of v1 and v2 under gf is given by the two projection terms
πi (pair v1 v2) in

1

σ1 × σ2

σ1 σ2.

pair v1 v2π1 (pair v1 v2) π2 (pair v1 v2)

(4.21)

The two diagrams agree on their restriction to ∆0 ?∆0∪∆0 ? (∆0q∆0). Lifting
this data against the pushout product of ∂∆1 ⊆ ∆1 and ∆0 ?∆0 ∪∆0 ? (∆0 q
∆0)→ ∆0 ?∆0 ? (∆0q∆0), we obtain a map ∆1⊗ (∆0 ?∆0 ?∆0 ? (∆0q∆0), i.e.
a homotopy between the diagrams (4.21) and (4.20). This homotopy contains
homotopies from g(f(v1)) to v1 and from g(f(v2)) to v2, which we take to
define φ(v1) and φ(v2).

Next let us construct ψ, i.e. define the image of the variable u. u is part of
the diagram B1

lim ∆0q∆0 → G(Γ) which can be depicted as

1

σ1 × σ2

σ1 σ2

uπ1 u π2 u

(4.22)

and the image of u under fg is given by the term pair (π1 u) (π2 u) in

1

σ1 × σ2

σ1 σ2.

pair (π1 u) (π2 u)π1 u π2 u



4.3. STRICT ∞-CATEGORIES 157

The two diagrams agree on their restriction to A1
lim ∆0q∆0 , hence define a map

∂∆1 ⊗B1
lim ∆0q∆0 ∪∆1 ⊗A1

lim ∆0q∆0 → G(Γ). The lift of this map against the
pushout product of ∂∆1 ⊆ ∆1 with j1

lim ∆0q∆0 contains a homotopy from u to
pair (π1 u) (π2 u), which we take as definition of ψ(u).

2. We construct a suitable map ∂∆2 ⊗ B1
lim ∆0q∆0 ∪∆2 ⊗ A1

lim ∆0q∆0 →
G(Γ.v1.v2) such that the lift to a map ∆2 ⊗B1

lim ∆0⊗∆0 → G(Γ.v1.v2) contains
a suitable term of the product of the constant types ∆2 → ∆0 σi−→→ G(Γ.v1.v2)
in (Γ.v1.v2)∆2 .

The map ∆2⊗A1
lim ∆0q∆0 → G(Γ.v1.v2) we take the constant triangle with

vertex
1

σ1 × σ2

σ1 σ2

π1 (pair v1 v2)π2 (pair v1 v2)

As map ∆{0,1} ⊗ B1
lim ∆0q∆0 → G(Γ.v1.v2) we take the image under g of the

diagram defining ψ; the endpoints of this diagram are given by (4.22) and
(4.22). As map ∆{1,2} ⊗B1

lim ∆0q∆0 → G(Γ.v1.v2) we take the degenerated line
over the diagram

1

σ1 × σ2

σ1 σ2.

π1 (pair v1 v2)π2 (pair v1 v2) pair v1 v2

The construction of ∆{0,2} ⊗ B1
lim ∆0q∆0 → G(Γ.v1.v2) is more involved.

Observe first that there exist homotopies from φ(vi) to the constant squares
on πi (pair v1 v2) which can be depicted as

1

σi σi

1

σi σi

vi
πi (pair v1 v2)

=

πi (pair v1 v2) πi (pair v1 v2)

=

φ(vi) (4.23)

for i = 1, 2.
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We now define two maps ∆1⊗Λ3
2 → G(Γ.v1.v2), one for the first and second

projection terms, as follows. The restrictions to ∆1 ⊗ ∆{0,1,2} are given by
the two legs of the diagram defining of φ(v) (with endpoints given by (4.21)
and (4.21)). The restrictions to ∆1 ⊗ ∆{0,2,3} are given by the homotopies
(4.23). The restrictions to ∆1 ⊗∆{1,2,3} are degenerated on the projections
σ1 × σ2 → σi.

The restrictions to ∆1⊗∆{0,1,3} of the two extensions ∆1⊗∆3 → G(Γ.v1.v2)
define the desired map ∆{0,2} ⊗ B1

lim ∆0q∆0 → G(Γ.v1.v2). The resulting lift
∆2 ⊗B1

lim ∆0⊗∆0 → G(Γ.v1.v2) contains a 2-simplex of terms of product types
(i.e. a term in Γ.v1.v

∆2

2 , which we take as definition of ε(u).

Proposition 4.53. The cwf sLcc supports weak product types.

Proof. Product type constructor and pair term constructor were defined in
Lemma 4.51.

Let Γ.(u : Prodσ1 σ2) ` τ and Γ.(v1 : σ1).(v2 : σ2) ` t : 〈pair v1 v2〉(τ). We
must construct an induction term Γ.(u : Prodσ1 σ2) ` indProd τ t : τ . In the
notation of Lemma 4.52, g = 〈pair v1 v2〉. We then define the induction term
as edge ∆{0,2} of the filler of the following inner 2-horn:

f(g(τ))

1 τ

ψ(τ)f(t)

indProd τ t

Next let us define the term

Γ.(v1 : σ1).(v2 : σ2) ` evProd τ t : Id (g(indProd τ t)) t (4.24)

corresponding to the evaluation rule. Consider the diagram ∆1 ⊗ Λ2
1 →

G(Γ.v1.v2) and its extension to ∆1 ⊗∆2 which can be depicted as follows:

g(τ)

1 g(τ)

g(f(g(τ)))

1 g(τ)

g(t)

t

g(ψ(τ))

φ(g(τ))

g(indProd τ t)

g(f(t))

=
=
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Here the left square (the image of ∆1 ⊗∆{0,1} is given by φ(t), and the right
square can be depicted as follows:

g(f(g(τ))) g(τ)

g(τ) g(τ)

φ(g(τ))g(ψ(τ))

φ(g(τ))

=

ε(τ)

=

The bottom square of the filler is of the form

1 g(τ)

1 g(τ)

=

g(indProd τ t)

=

t

which induces the desired evaluation term (4.24).

Weak unit types

Definition 4.54. A covariant cwf C with context extensions supports weak
unit types if it interprets the following type and term constructors:

Γ Ctx

Γ ` 1

Γ Ctx

Γ ` ∗ : 1

Γ.(v : 1) ` τ Γ ` t : 〈∗〉(τ)

Γ.(v : 1) ` ind1 τ t : τ

Γ.(v : 1) ` τ Γ ` t : 〈∗〉(τ)

Γ.(v : 1) ` ev1 τ t : Id (〈∗〉(ind1 τ t)) t

Definition 4.55. Let Γ be a strict lex ∞-category

1. The unit type Γ ` 1 is the cone point of the map Lim∅ = ∆0 ? ∅ → G(Γ)
defined via the canonical lift against j0

lim ∅.

2. The unit term Γ ` ∗ : 1 is given by the degenerated 1-simplex on the unit
type 1.

Lemma 4.56. Let Γ be an lcc ∞-category Γ. Denote by Γ.v = Γ.(v : 1) the
context extension by the unit type. Let f = 〈idΓ, ∗〉 : Γ.v → Γ and let g = pΓ.v.

1. There exists a strong deformation retract φ : Γ.v → Γ from gf to the
identity on Γ.v under Γ.

2. There exists a map ε : Γ.v → Γ∆2 witnessing the commutativity up to
homotopy of the diagram

fgf

f f

=f∆1◦φ

=
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of functors Γ.v → Γ.

Proof. 1. Consider the square boundary ∂(∆1 → ∆1)→ G(Γ.v) given by

1 1

1 1.

=

v ∗

=

Lifting against the pushout product of ∂∆1 ⊆ ∆1 and j1
lim ∅, this boundary

admits a filler ∆1 ×∆1 → G(Γ.v). This filler can be identified with a term of
the unit type in (Γ.v)∆1 , which we take as definition of φ(v).

2. Follows by a similar argument as point 2 of Lemma 4.47.

Proposition 4.57. The covariant cwf sLcc supports weak unit types.

Proof. By a similar argument as for product types.

Slices of strict ∞-categories

Note that we have a simplicial adjunction F : Lcc� sLcc : G.

Proposition 4.58. The alternative slice functor Lcc∆0/ → Lcc extends to a
simplicial functor sLcc∆0/ → sLcc such that

sLcc∆0/ sLcc

Lcc∆0/ Lcc

commutes. Here sLcc∆0/ is defined by the pullback

sLcc∆0/ sLcc

Lcc∆0/ Lcc

or, equivalently, as the coslice category sLccF (∆0)/.

Proof. Let Γ be a strict lcc category and let x : ∆0 → G(Γ) be an object of Γ.
To define the 1-categorical lift of the slice functor, we must solve the lifting
problems as on the left of

S ⊗A G(Γ)/x

S ⊗B

a

id⊗j

(S ⊗A). G(Γ)

(S ⊗B).

a′

(id⊗j). (4.25)
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functorially in simplicial sets S and strict maps in (Γ, x) for all j ∈ J . Taking
transposes along the alternative cone/slice adjunction, we see that we can
equivalently solve the lifting problem on the right of (4.25). Recall that the
lower square and outer rectangle of

S ⊗∆0 ∆0

S ⊗A. (S ⊗A).

S ⊗B. (S ⊗B).

id⊗j. (id⊗j).

are pushouts, hence the lower square is a pushout.
We can thus solve the lifting problem to the right of (4.25) as follows with

lifts against idS ⊗ j. (note that j. ∈ J) and the universal property of pushouts:

S ⊗A. (S ⊗A). G(Γ)

S ⊗B. (S ⊗B).

p

a′

The canonical lifts of Γ against S ⊗ j. are functorial in S and Γ, hence so are
our lifts defining the strict lcc ∞-category Γ/x.

To show that slicing extends to a simplicial functor, we must show that the
map Lcc∆0((G(Γ), x), (G(Γ′), x′))→ Lcc(G(Γ)/x, G(Γ′)/x

′
) restricts to a map

sLcc∆0((Γ, x), (Γ′, x′))→ sLcc(Γ/x,Γ′/x
′
).

n-simplices in sLcc∆0((Γ, x), (Γ′, x′)) can be identified with diagrams

(∆0)[ G(Γ′)

G(Γ) G(Γ′∆
n
),

x

x′

c

f

where c is induced by the unique map ∆n → ∆0, such that f preserves the
canonical lifts of Γ and Γ′∆

n . The image of the n-simplex f is given by

G(Γ)/x G((Γ′∆
n
)/cx

′
) G((Γ′/x

′
)∆n

)
f/∆

0
k

where the isomorphism k is induced by the Yoneda lemma from the chain of
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isomorphisms

Hom(S,G((Γ′∆
n
)/cx

′
))

∼= Hom
∆̃n×∆̃0/

(∆̃n × S., G(Γ′))

∼= Hom
∆̃0/

((∆̃n × S)., G(Γ′))

∼= Hom(S,G((Γ′/x
′
)∆n

)).

It thus suffices to show that the map G((Γ∆n
)/cx)→ G((Γ/x)∆n

) is strict
for all (Γ, x). Let j : A → B be in J and let a : S ⊗ A → G((Γ∆n

)/cx) with
corresponding map a′ : S ⊗A→ G((Γ/x)∆n

). Identifying a and a′ with their
double transposes along the cone/slice and power/copower adjunctions, we
obtain the following diagram:

∆̃n × S × (∆0)[ ∆̃n × (∆0)[ (∆0)[

∆̃n × S ×A. ∆̃n × (S̃ ×A). (∆̃n × S ×A). G(Γ)

∆̃n × S ×B. ∆̃n × (S̃ ×B). (∆̃n × S ×B).

p p
x

p

u

p

a′

Here a = a′u. Note that ∆̃n ×− has a right adjoint (exponentiation with ∆̃n)
and hence preserves colimits, and that we have S̃ × T ∼= S̃× T̃ for all simplicial
sets S and T . Thus the two left squares are indeed pushout squares.

The transpose of the lift for a is induced by the lift of G(Γ) for ∆̃n × S× j.
and the left bottom pushout square. The transpose of the image of this lift in
G((Γ′/x)∆n

) is then induced by the composed pushout square on the right, or,
equivalently, by the bottom right pushout square. The transpose of the lift for
a′, on the other hand, is induced by composing the two pushout squares on the
bottom and again the lift of G(Γ) for (∆n × S)⊗ j.. Thus the two lifts agree,
hence G((Γ∆n

)/cx)→ G((Γ/x)∆n
) is indeed strict.

Lemma 4.59. LetM be a simplicially enriched category which is simplicially
complete. Denote by Lim(M, sSet) the 1-category of simplicial functors which
preserve simplicial limits (with respect to the cartesian closed structure of sSet)
and simplicial natural transformations, and let Lim(M0,Set) be the category
of limit-preserving functors from the underlying 1-categoryM0 to Set. Then
the functor Lim(M, sSet) → Lim(M0, Set) given by G 7→ Hom(∆0, G(−)) is
an equivalence.
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Proof. Let G :M→ sSet be a simplicial limit-preserving functor. Then for all
X inM and n ≥ 0 there is an isomorphism

Hom(∆n, G(X))

∼= Hom(∆0 ×∆n, G(X))

∼= Hom(∆0, G(X)∆n
)

∼= Hom(∆0, G(X∆n
)),

so G is determined by the points of its images. Conversely, if G′ :M0 → Set is
a limit-preserving functor, then setting Hom(∆n, G(X)) = G′(X∆n

) defines a
simplicial limit preserving functorM→ sSet: Boundary and degeneracy maps
of G(X) are given by the image under G′ of maps X∆m → X∆n induced from
maps [n] → [m]. By functoriality of G′, the boundary and degeneracy maps
of G(X) satisfy the simplicial identities. If f : X → Y is a map in M and
k : ∆n → ∆m, then

X∆m
Y ∆m

X∆n
Y ∆n

Xk

f∆m

Y k

f∆n

commutes, hence so does the image of the square under G′. It follows that
f induces a natural transformation G(X) → G(Y ). Functoriality of G with
respect to 1-cells of M follows from functoriality of G′ applied to maps of

the form X∆n f∆n

−−−→ Y ∆n g∆n

−−→ Z∆n . Thus G is well-defined as a 1-functor
M0 → sSet.

Now let us extend G to a simplicial functor. The isomorphisms

Hom(∆n, G(XS))

= Hom(∆0, G((XS)∆n
))

∼= Hom(∆0, G(S ×∆n))

= Hom(S ×∆n, G(X))

∼= Hom(∆n, G(X)S)

induce natural isomorphisms G(XS) ∼= G(X)S for all X inM and simplicial
sets S. An n-simplex f : ∆n → M(X,Y ) of maps corresponds to a map
f̄ :M(X,Y ∆n

), and we define G(f) as the n-simplex of maps from G(X) to
(GY ) corresponding to the map

G(X)
G(f̄)−−−→ G(Y ∆n

) ∼= G(Y )∆n
.

It follows directly from this that G (which we have not proved to be simplicially
functorial yet) preserves powers S → M(XS , X). A pair of composable n-
simplices f, g inM corresponds to morphisms f̄ : X → Y ∆n and ḡ : Y → Z∆n ,



164 CHAPTER 4. THE ∞-CATEGORICAL MULTIVERSE MODEL

and the composition gf corresponds to the map

gf : X
f̄−→ Y ∆n (ḡ)∆n

−−−→ (Z∆n
)∆n ∼=−→ Z∆n×∆n Zδ−−→ Z∆n

where δ : ∆n ×∆n denotes the diagonal. The composition of G(f) and G(g)
can be expressed in terms of powers by the analogous map G(X)→ G(Z)∆n .
Since G preserves all involved operations, it follows that G is functorial also on
simplices of maps.

We have shown that G 7→ Hom(∆0, G(−)) is essentially surjective; let us
show next that it is faithful. If φ : G⇒ G′ is a simplicial natural transformation
of simplicial limit-preserving functors, then the diagram

Hom(∆n, G(X)) Hom(∆n, G′(X))

Hom(∆0, G(X)∆n
) Hom(∆0, G′(X)∆n

)

Hom(∆0, G(X∆n
)) Hom(∆0, G′(X∆n

))

φX◦−

∼= ∼=
(φX)∆n◦−

∼= ∼=
φ

(X∆n )
◦−

(4.26)

commutes for all X inM; the upper square by the universal property of the
power, and the lower by preservation of powers by G and G′. Thus the action
of φX on n-simplices is uniquely determined by the action of φX∆n on points.

Finally, let us show fullness. Let φ0 : Hom(∆0, G(−))⇒ Hom(∆0, G′(−))
be a natural transformation on points. Take the vertical isomorphisms of (4.26)
to define (φX)n : Hom(∆n, G(−)) → Hom(∆n, G′(−)). Then φX : G(X) →
G′(X) is a natural transformation because of the naturality squares for φ0

and the maps X∆n → X∆m induced by maps ∆m → ∆n. φ is a natural
1-categorical transformation because of naturality of φ0 with respect to maps
X∆m → Y ∆n , and it is simplicially natural because

G(X) G(Y ∆n
) G(Y )∆n

G(X) G′(Y ∆n
) G′(Y )∆n

G(f)

φX

∼=

φ
(Y∆n ) (φY )∆n

G′(f) ∼=

commutes for all f : X → Y ∆n inM.

The forgetful functors Lex → sSet+ → sSet are faithful. Thus although
Lemma 4.59 applies directly only to sSet-valued functors, we also use it fre-
quently to construct natural transformations of sSet+-valued or Lex-valued
functors by showing that the components of natural transformations are valued
in marking preserving maps. Note that if C,D ∈ Ob sSet+ are fibrant, then
sSet+(C,D) ↪→ sSet(U(C), U(D)) is an isomorphism, and that for fibrant lex
sketches E ,F the image of Lex(E ,F) ↪→ sSet(U(E), U(F)) consists of the finite
limit-preserving functors.
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Lemma 4.60. Let Γ be a strict lex ∞-category and let f : ∆1 → G(Γ). Then
the simplicially natural map G(Γ∆1

)
/f
pb → G(Γ)/y admits a simplicially natural

section.

Proof. We apply Lemma 4.59 to define a section on points. Note that the
functor (Γ, f) 7→ G(Γ∆1

)
/f
pb) can be expressed by assigning to (Γ, f) first

(G(Γ), f) ∈ Ob Lex∆1/, then to (C, f) the cospan

U(C
(B0

lim Λ2
2

)
)← U(C)∆1×∆1 → (U(C)∆1

)/f (4.27)

in sSet+ and then taking the limit over this diagram. (Recall that B0
lim Λ2

2
is

the lex sketch given by the underlying simplicial set ∆0 ? Λ2
2 which is marked

as a limit cone. C
B0

lim Λ2
2 is the exponential in Lex.)

All three objects of the cospan (4.27) can be obtained from (C, f) by
application of right adjoints: In the left component, it is the composition

(C, f) 7→ C 7→ C
(B0

lim Λ2
2

)
7→ U(CΛ2

2).

In the middle component, it is the composition

(C, f) 7→ C 7→ U(C) 7→ U(C)∆1×∆1
.

In the right component, it is the composition

(C) 7→ (U(C), f) 7→ (U(C)∆1
, f) 7→ (U(C)∆1

)/f .

Note here that exponentiation by ∆1 defines a right adjoint sSet+
∆1/
∼= sSet+

∆0×∆1/
→

sSet+
∆0/

. We conclude that (Γ, f) 7→ (G(Γ)∆1
)
/f
pb preserves all simplicial limits.

Similarly, (Γ, f : x→ y) 7→ G(Γ)/y can be expressed as composition of right
adjoints

sLcc∆1/ → sSet+
∆1/
→ sSet+

∆0/
→ sSet+.

Now let us define the action on points of the section G(Γ)/y → (G(Γ)∆1
)
/f
pb.

A point of G(Γ)/y is an edge g : z → y in G(Γ). Together with f this defines a
cospan, over which we obtain the canonical pullback square

w z

x y

f ′

g′ g

f

in G(Γ) which is induced by the lift against j0
lim Λ2

2
. This defines a point of

(G(Γ)∆1
)
/f
pb over g, and it varies naturally in (Γ, f) because it is defined in

terms of canonical pullback squares, which are preserved under morphisms in
Γ.
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Definition 4.61. Let Γ be a strict lex category and let f : x → y be a
morphism in Γ. The (canonical) pullback functor f∗ along f is the map

f∗ : G(Γ/y)→ (G(Γ)∆1
)
/f
pb → G(Γ/x)

defined in terms of the map constructed in Lemma 4.60.

Proposition 4.62. Let Γ be a strict lex category and let k : ∆2 → U(Γ) be a
2-simplex in Γ, which we depict as

y

x z.

gf

h

Then f∗ ◦ g∗ and h∗ are naturally homotopic, in the sense that there is a map
φ : U(Γ/z)→ U(Γ/x)∆1 which varies naturally in (Γ, k) such that

U(Γ/z)

U(Γ/x)∆{0} U(Γ/x)∆1
U(Γ/x)∆{1}

φ
f∗◦g∗ h∗

commutes.

Proof. By Lemma 4.59, it suffices to define φ on points. Let a : w → z a
morphism in Γ corresponding to a point in G(Γ/z). Then a′′ = f∗(g∗(a)) is
defined in terms of canonical pullback squares

w′′ w′ w

x y z

a′′

f ′

a′

g′

a
f g

(4.28)

Let k′ : ∆2 → G(Γ) be the canonical filler of the inner horn Λ2
1 → G(Γ) given

by f ′ and g′. The two pullback squares of diagram (4.28) together with k and k′

constitute a map ∂∆1×∆2∪∆1×∆2 → G(Γ), which we may lift canonically to
a map p : ∆1×∆2 → G(Γ) since the inclusion ∂∆1×∆2 ∪∆1×∆2 ⊆ ∆1×∆2

is a trivial cofibration in the Joyal model structure. The restriction p′ of p to
∆1 ×∆{0,2} is a pullback square in G(Γ) by the pasting law and in particular
marked as such. a′′′ = h∗(a) is defined by a pullback square

w′′′ w

x z

a′′′ a

h

(4.29)



4.3. STRICT ∞-CATEGORIES 167

over a cospan which agrees with the restriction of p′ to Λ2
2. The pullback square

(4.29), p′ and the degenerated lower cospan thus define a map ∂∆1 ⊗B0
lim Λ2

2
∪

∆1 ⊗ A0
lim Λ2

2
→ U(Γ), which we lift canonically along the pushout product

of the boundary inclusion ∂∆1 ⊆ ∆1 and the trivial cofibration j0
lim Λ2

2
to a

map p′′ : ∆1 ⊗B0
lim Λ2

2
→ G(Γ). U(B0)lim Λ2

2
= ∆0 ? Λ2

2
∼= ∆1 ×∆1 is a square.

The restriction of p′ to ∆1 ⊗ (∆1 ×∆{0}) is an equivalence of a′′ with a′′′ in
G(Γ/x)∆1 .

Recall that the nerve functor N : Cat→ sSet has a left adjoint τ1 : sSet→
Cat such that τ1 a N is Quillen adjunction of the canonical model structure on
Cat with the Joyal model structure. For ∞-categories C (in the sense of fibrant
objects of sSet with the Joyal model structure), τ1(C) can be identified with
the homotopy category of C: The objects of τ1(C) are the vertices of C, and the
morphisms of τ1(C) are equivalence classes of edges in C under left homotopy
(or, equivalently, right homotopy). Since τ1 preserves products, the cartesian
self-enrichment of sSet induces Cat-enrichment of sSet, i.e. the structure of a
2-category on sSet.

Adjunctions of ∞-categories can be described in terms of this 2-categorical
structure. Thus an adjunction consists of∞-categories C,D consists of functors
F : C � D : G, an edge η in sSet(C, C) from the identity on C to G ◦F , and an
edge ε in sSet(D,D) from F ◦ G to the identity on D such that the triangle
equalities hold the 1-categories sSet(C, C) and sSet(D,D).

There is an obvious adaptation of the nerve functor that makes it valued
in sSet+ by defining an edge ∆1 → N(C) to be marked if and only if it arises
from an isomorphism in C, which gives rise to Quillen adjunction Cat� sSet+

such that the left adjoint preserves finite products. Thus the above description
of adjunctions can be expressed in terms of the arising 2-categorical structure
on sSet+.

Lemma 4.63. Let f : G(Γ)→ G(∆) be a lex functor of strict lex categories
Γ,∆, and let g : x→ y be an edge in Γ. Then the square

G(Γ/y) G(∆/f(y))

G(Γ/x) G(∆/f(x))

f/y

g∗ φ
' f(g)∗

f/x

(4.30)

commutes up to a canonical natural equivalence φ.

Proof. Let h : z → y be a morphism in Γ corresponding to a point of Γ/y.
Then both f(g)∗(f/y(h)) and f/x(g∗(h)) are related by a canonical equivalence

because they are first projections of pullback squares over the cospan f(x)
f(g)−−→

f(y)
f(h)←−− f(z). We thus obtain a natural homotopy of (4.30) on points, which

induces a homotopy in all dimensions by Lemma 4.59.
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Proposition 4.64. 1. Let Γ be a strict lex category and let f : x → y be
a morphism in Γ. Then there exista a left adjoint Σf : U(G(Γ/x))→→
U(G(Γ/y)) to f∗ and a unit η : Σf ◦ f∗ ⇒ id : U(G(Γ/x))→ U(G(Γ/x))
which varies naturally in (Γ, f).

2. Let Γ be a strict lcc category and let f : x → y be a morphism in Γ.
Then there exist a right adjoint Πf : U(G(Γ/x))→ U(G(Γ/y)) to f∗ and
counit ε : f∗ ◦Πf ⇒ id : U(G(Γ/x))→ U(G(Γ/x)) which vary naturally
in (Γ, f).

Proof. By Lemma 4.59, it suffices to construct this data on points.

Proposition 4.65. Let f : U(G(Γ))→ U(G(∆)) be a lex functor of strict lcc
categories Γ and ∆. Then the following conditions are equivalent:

1. f is an lcc functor.

2. Let g : x→ y be a morphism in Γ. Then there exists a natural equivalence
ψ in

U(G(Γ/x)) U(G(∆/f(x)))

U(G(Γ/y)) U(G(∆/f(y)))

f/x

Πg ψ
' Πf(g)

f/y

such that (f/y, f/x, φ, ψ) with φ as in (4.30) is a pseudo-map from the
adjunction g∗ a Πg to f(g)∗ a Πf(g) in the 2-category sSet+: Thus if
ε : g∗ ◦ Πg ⇒ id and ε′ : f(g)∗ ◦ Πf(g) ⇒ id are the counits of the
adjunctions, then

f(g)∗ψ ◦ φΠg ◦ f/xε = ε′f/x

holds in the homotopy category of functors and natural transformations
G(Γ/y)→ G(∆/f(y)).

3. Let g : x→ y be a morphism in Γ. Then there exist right adjoints Πg to
g∗ and Πf(g) to f(g)∗ such that the following Beck-Chevalley condition
holds: The mate f/y ◦Πg ⇒ Πf(g) ◦ f/x induced by natural equivalence φ
of (4.30) and the (co)units of the adjunctions g∗ a Πg and f(g)∗ a Πf(g)

is an equivalence.

Suppose furthermore that f/x has a right adjoint f ′x : U(G(∆f(x)))→ U(G(Γx))
for all x. Then f is lcc if and only if the following condition holds:

4. Let g : x → y be a morphism in Γ. Then the following Beck-Chevalley
condition holds: The mate f ′x ◦ f(g)∗ ⇒ g∗ ◦ f ′y induced by the natural
equivalence φ of (4.30) and the (co)units of the adjunctions g∗ a Πg and
f(g)∗ a Πf(g) is an equivalence.



4.3. STRICT ∞-CATEGORIES 169

Proof. The equivalence of 2, 3 and 4 (if the left adjoints f ′x exist) follows
from general 2-categorical nonsense [48, Exercise 1.8.7 and Lemma 1.8.9 with
B = ∆1].

Let us show the equivalence of 1 and 2. Assume first that f is an lcc
functor, and let us construct a pseudo-map of adjunctions. By Lemma 4.59,
constructing ψ on points h : z → x in Γ/x is sufficient. Consider the following
diagrams in ∆:

f(z) · ·

f(x) f(x) f(y)

f(h)

η′(f/x(h))

f(g)∗(Πf(g)(f
/x(h))) Πf(g)(f

/x(h))

= f(g)

f(z) · ·

f(x) f(x) f(y)

f(h)

f/x(η(h))

f/x(g∗(Πg(h))) f/y(Πg(h))

= f(g)

Since f is lcc, both diagrams are marked as dependent products via P̃i. We
obtain a homotopy relating the two dependent products via the degeneracies
on f(h) and f(g) and a lift against the pushout product of ∂∆1 ⊆ (∆1)] and
j̃0
Π. The right face of this homotopy is the equivalence ψ(h) : Πf(g)(f

/x(h)) '
f/y(Πg(h)) in ∆/f(y).

Let us show that the required equation holds. f(g)∗ψ and φΠg are defined
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as left faces of cubes which can be depicted as follows:

· ·

f(x) f(y)

· ·

f(x) f(y)

f(g)∗(Πf(g)(f
/x(h))) Πf(g)(f

/x(h))

f(g)∗(f/y(Πg(h))) f/y(Πg(h))

· ·

f(x) f(y)

· ·

f(x) f(y)

f(g)∗(f/y(Πg(h))) f/y(Πg(h))

f/x(g∗(Πg(h))) f/y(Πg(h))

The cubes are composable along the z-axis. Because the bottom faces of both
cubes are degenerated, and the right face of the bottom cube is degenerated. It
follows that the lower cospan of the cube relating the right squares of the two
cubes above is a composition of lower cospans of the two cubes. All faces along
the z axis of the cubes are pullback squares. It follows that any composition
of the two cubes (4.3) is canonically homotopic to the cube relating the right
squares of diagram (4.3).

The compositions f/x(ε(h)) ◦ (φ(Πg(h)) ◦ f(g)∗ψ) in the ∞-category of
functors U(G(Γ/x))→ U(G(Γ/x)) can be constructed functorially such that
pointwise evaluation corresponds to canonical lifts against Λ2

1 ⊆ ∆2. Thus if
e1 = (φ(Πg(h)) ◦ f(g)∗ψ)(h), then e1 is a composition of the left face of the two
cubes (4.3). The composition of the two cubes of (4.3) can be constructed such
that the left face is equal to e1, hence e1 is canonically homotopic to the central
square of the homotopy relating the diagrams (4.3). Let e2 be the composition
of e1 with f/x(ε(h)). Then e2 is canonically homotopic to the diagonal square
in the left cube relating the two diagrams (4.3).

Let e1 : f(g)∗(Πf(g)(f
/x(h)))→ f/x(g∗(Πg(h))) be the composition (defined

as canonical lift against Λ2
1 ⊆ ∆2 of f(g)∗(ψ(h)) and φ(Πg(h)) in ∆/f(x), and

let e2 be the composition of e1 and f/x(ε(h)). Then the composite of the two
cubes (4.3) can be chosen such that the left face is e1, hence there is a canonical
homotopy relating e1 wit the central vertical square e′1 of (4.3) along the z-
and y-axes.



4.3. STRICT ∞-CATEGORIES 171

Lemma 4.66. Let Γ be a strict lex ∞-category, let f : x→ y be a morphism
in Γ and let g : z → y be a morphism corresponding to an object of Γ/y. Denote
by

z′ z

x y

f ′

g′ g

f

the canonical pullback square over (f, g). Then the square

G((Γ/y)/g) G((Γ/x)/g
′
)

G(Γ/z) G(Γ/z
′
)

(f∗)/g

a b

(f ′)∗

commutes up to homotopy.

Proof. It suffices to construct the required homotopy on points. Thus let

w z

y y

h

g

=

(4.31)

be a square in Γ corresponding to an object of (Γ/y)/g. Then b((f∗)/g(h)) is
given by the left face of the cube

w′ w

z′ z

x y

x y

h′

h
f ′

f∗(g)

g
f

=
=

f

(4.32)

The back, front and the degenerated bottom faces of this cube are pullback
squares. It follows by the pasting law that also the top face is a pullback square.
The image of (4.31) under a is the edge h : w → z, and then (f ′)∗(h) is defined
by the canonical pullback square

w′′ w

z′ z

h′′ h

f ′
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The lower cospans of this pullback square and the pullback square given by the
top face of (4.32) agree, so we obtain a homotopy of pullback squares restricting
to the degenerated homotopy on lower cospans. One face of this homotopy has
the form

w′′ w′

z′ z

h′′ h′

=

which corresponds to the required homotopy h′ ' h′′ in Γ/z
′ .

Theorem 4.67 (Beck-Chevalley). Let Γ be a strict lex category, and let

x y

z w

f

g h

k

be a pullback square in Γ. Then the mate

G(Γ/x) G(Γ/y)

G(Γ/z) G(Γ/w)

Σg ⇐ Σh

f∗

k∗

induced by the homotopy g∗ ◦ k∗ ' f∗ ◦ h∗ is an equivalence.

Proof. It suffices to construct the required homotopy on points. Thus let
` : v → y be a morphism in Γ corresponding to a vertex of G(Γ/y). Then
k∗(Σh(l)) is given by

u v

y

z w

k∗(Σh(`))

y `

Σh(`)

h

k

(4.33)

while Σg(f
∗(`)) is given by

u′ v

x y

z w

f∗(`)

Σg(f∗(`))

y
`

f

g h

k

Combining this diagram with the subdiagram of (4.33) given by exclusion of u,
we obtain a map ∂∆1 ×∆2 q∂∆1×Λ2

2
∆1 × Λ2

2 → G(Γ), which we extend to a
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map ∆1 → ∆2 → G(Γ). The face ∆1 ×∆{0,2} of this diagram can be depicted
as

u′ v

z w.

Σg(f∗(`)) Σh(`)

k

By the pasting law, it is a pullback square. Since the lower cospan of this
diagram agrees with the lower cospan of the pullback square (4.33), we obtain
a homotopy of pullback squares. One of the faces of this homotopy can be
depicted as

u u′

z z,

k∗(Σh(`)) Σg(f∗(`))

=

which corresponds the required homotopy in Γ/z.

Corollary 4.68. Let Γ be a strict lcc category and let f : x→ y be a map in
Γ. Then the pullback functor f∗ : U(G(Γ/y))→ U(G(Γ/x)) is lcc.

Proof. Combine Proposition 4.65 and Theorem 4.67.

Proposition 4.69. Let Γ be a strict lex category and let t : ∆0 → G(Γ) be
a terminal object. Then the projection pt : G(Γ/t)→ G(Γ) has a simplicially
natural section st : G(Γ)→ G(Γ/t).

Proof. By Lemma 4.59, it suffices to construct st on points, where it can be
defined in terms of canonical lifts against j1

lim ∅.

Definition 4.70. If x : ∆0 → G(Γ) is an object of a strict lex category Γ, then

we denote by x∗ the composite G(Γ)
st−→ G(Γ)/t

(!x)∗−−−→ G(Γ)/x. Here t denotes
the canonical terminal object of Γ (the one induced by the lift against j0

lim ∅),
and !x : x→ t is the morphism induced by lifts against j1

lim ∅.

Definition 4.71. Let x : ∆0 → G(Γ) be an object in a strict lex category
Γ. The diagonal dx : s(x) → x∗(x) is the morphism in G(Γ)/x from the
degenerated edge x =−→ x to x∗(x) defined as follows. Lifts against j1

lim ∅ induce
a square in G(Γ) whose boundary can be depicted as

x x

x t

=

!x= st(x)

!x

where t denotes the canonical terminal object of Γ. This square and the pullback
square

x′ x

x t.

x∗(x) st(x)

!x



174 CHAPTER 4. THE ∞-CATEGORICAL MULTIVERSE MODEL

restrict to the same lower cospan, hence define a map ∂∆1 ⊗ B0
lim Λ2

1
∪∆1 ⊗

A0
lim Λ2

1
→ G(Γ). The canonical lift against the pushout product of ∂∆1 ⊆ ∆1

and j1
lim Λ2

2
contains a 2-simplex as in the top right half of the square

x x′

x x.

x∗(x)=

This square corresponds to the diagonal morphism d in Γ/x.

Lemma 4.72. Let Γ be a strict lex category and let t0, t1 : ∆0 → G(Γ) be two
terminal objects. Let t : t0 → t1 be any map. Then

G(Γ) G(Γ/t1) G(Γ/t0) G(Γ)
st1 t∗ pt0

is simplicially natural homotopic to the identity, in the sense that there is a
simplicially natural map φ : G(Γ)→ G(Γ)∆1 with projections pt0 ◦ t∗ ◦ st1 and
id.

Proof. By Lemma 4.59, it suffices to construct φ on points. Let x : ∆0 → G(Γ).
Then x′ = pt0(t∗(st1(x))) is defined by a pullback square

x′ x

t0 t1

t∗(st0 (x))

t′

st1 (x)

t

in G(Γ). Every morphism between terminal objects is an equivalence. It follows
that also the square

x x

t0 t1

st0 (x)

=

st1 (x)

t

induced by the universal property of t1 is a pullback square. The two pullback
squares agree on the lower cospan, hence they are equivalent. In particular, x′

and x are homotopic.

Definition 4.73. Let C be a lex category. The ∞-category of points C∗ ∈
Ob sSet+ is given by U(CT ), where T is the lex sketch given by U(∆1) with
∆{0} marked as terminal object.

Proposition 4.74. Let Γ and E be lex categories and let x : ∆0 → G(Γ)
be an object of Γ. Let S0 be the set consisting of triples (f̄ , φ, ψ), where
f̄ : G(Γ/x)→ G(E) is a lex functor, φ : G(Γ)→ G(E)∆1 is a homotopy such

that G(Γ)
φ−→ G(E)∆1 → G(E)∆{0} is equal to f̄ ◦ x∗, and ψ : ∆0 → (E∗)

∆1 is
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a homotopy of points in E which is compatible with φ and the diagonal dx in
that it can be depicted as

f̄(s(x)) f̄(x∗(x))

t ψ1(x).

dx

ψ(x)

for some terminal object t of G(E). Let T0 be the set consisting of tuples (f, k),
where f : G(Γ)→ G(E) is an lcc functor and k : t→ f(x) is a morphism in E
with t terminal. There is a map p0 : S0 → T0 which assigns to a triple (f̄ , φ, ψ)
the tuple (φ1, ψ1).

The assignments ((Γ, x), E) 7→ S0 and ((Γ, x), E) 7→ T0 are limit-preserving
functors (sLcc∆0/)

op × sLcc→ Set, hence by Lemma 4.59, the map p0 extends
to a map p : S → T of simplicial sets. (Alternatively, S can be described as
subobject

S ⊆ Lex'(G(Γ/x), G(E))× sSet(∆1,Lex'(G(Γ), G(E)))× sSet+
'(T , G(E))

corresponding to an equalizer diagram, and similarly for T .)
Then p : S → T admits a simplicially natural section s : T ↪→ S, and

there is a simplicially natural map h : S → S∆1 corresponding to a homotopy
s ◦ p ' id.

Proof. We construct a section s0 to p0 on points. Thus let f : G(Γ)→ G(E)
be an lcc functor and let k : tE → f(x) be a morphism in E with tE a terminal
object. We define f̄ : G(Γ/x)→ G(E) as composition

G(Γ/x) G(E/f(x)) G(E/tE ) G(E).
f/x k∗ ptE

Next let us construct φ : f̄ ◦ x∗ ' f : G(Γ)→ G(E). We have x∗ = (!x)∗ ◦ stΓ ,
where tΓ denotes the canonical terminal object of Γ. By functoriality of all
involved constructions, it follows that f̄ ◦ x∗ = g ◦ f , where g is the composite

g : G(E) G(E/f(tΓ)) G(E/f(x)) G(E/tE ) G(E).
sf(tΓ)) (!f(x))

∗
k∗ ptE

Denote by
f(x)

tE f(tΓ)

!f(x)k

t

the canonical filler for the (2, 1)-horn given by k and !f(x)). By Lemma 4.59 we
obtain a homotopy h0 : k∗ ◦ (!f(x))

∗ ' t∗. By Lemma 4.72, there is a homotopy
h1 : ptE ◦ t∗ ◦ sf(tΓ) ' idG(E). The homotopies (ptE )∆1 ◦ h0 ◦ sf(tΓ) and h1 are
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maps G(E)→ G(E)∆1 whose second and first projections, respectively, agree.
We thus obtain a map G(E)→ G(E)Λ2

1 . A pointwise argument using Lemma
4.59 shows that that G(E)∆2 → G(E)Λ2

1 admits a section. We thus obtain a
map G(E)→ G(E)∆2 , and then the composite G(E)→ G(E)∆2 → G(E)∆{0,2}

is a homotopy g ' id, which defines the required homotopy φ : f̄ ◦ x∗ ' f by
composition with f .

Next let us define ψ. Consider the three squares

tE f(x)

f(x) f(x× x) f(x)

tE f(x) f(tΓ)

s

s A f(d)'〈id,id〉

〈id,s◦!f(x)〉

B p1

p2

C

s

(4.34)

in G(E): C is the image under f of the pullback square defining x∗(x). Note
that f(x × x) is a (fibre) product in E, but not the canonical one. B is
induced by the universal property of the pullback square C via the composite

f(x)
!f(x)−−−→ tE

s−→ f(x) on the first projection and id : f(x) → f(x) on the
second projection. Since the composed square of B and C is a pullback square,
it follows by the pasting law that also B is a pullback square. A is induced by
the universal property of the pullback square C because the two composites
〈id, s◦!f(x)〉 ◦ s and d ◦ s are both homotopic to s : tE → f(x) after composition
with p1and p2. Because the vertically composed square AB is a pullback square,
it follows that also A is a pullback square.

The component φx is given by a diagram

f(x× x)

f̄(x∗(x)) f(x)

f(x)

tE f(tΓ)

f(x) f(x)

tE f(tΓ)

φx s

in Γ, which includes an edge f̄(x∗(x))→ f(x× x). Let us show that there is a
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triangle of the form

f̄(x∗(x))

f(x) f(x× x).

φx

f(d)

(4.35)

By the universal property of pullback square C above, it suffices to show that
the composites with the two projections p1 and p2 are homotopic. For p1 this
follows by composing the homotopies

(f̄(x∗(x))→ f(x× x)
p1−→ f(x))

' (f̄(x∗(x))→ tE
s−→ f(x))

' (f̄(x∗(x))
φx−→ f(x)→ tE

s−→ f(x))

' (f̄(x∗(x))
φx−→ f(x)

〈s,!tE 〉−−−−→ f(x× x)
p2−→ f(x))

of morphisms in G(Γ), and for p2 it follows by composing the homotopies

(f̄(x∗(x))→ f(x× x)
p2−→ f(x))

' (f̄(x∗(x))→ f(x))

' (f̄(x∗(x))
φx−→ f(x)

=−→ f(x))

' (f̄(x∗(x))
φx−→ f(x)

〈s,!tE 〉−−−−→ f(x× x)
p1−→ f(x)).

The image of the diagonal d : idx → x∗(x) under f̄ is given by a diagram

f̄(idx) f(x)

f̄(x∗(x)) f(x× x)

tE f(x).

f̄(d) f(d)

p1

s

(4.36)

The front and back squares are pullbacks, hence by the pasting lemma also
the top square is a pullback square. The triangle (4.35) induces an equivalence
of lower cospans of the top square of (4.36) with the lower cospan of pullback
square C in (4.34) which is compatible with φx : (̄x∗(x))→ f(x). Extending
this equivalence of lower cospans to an equivalence of pullback squares, we
obtain ψ as one of the faces of the homotopy.

Next let us construct the map h : S → S∆1 corresponding to a homotopy
s ◦ p ' id. As before, it suffices to define h on vertices. Since s is a section to p,
we can further reduce to constructing for all pairs (g0, φ0, ψ0) and (g1, φ1, ψ1)
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in Hom(∆0, S) which map to the same pair (f, k) in Hom(∆0, S) an edge in
S from (g0, φ0, ψ0) to (g1, φ1, ψ1). The data comprising E and the (gi, φi, ψi)
correspond to objects of a sSet+-category K defined by an equalizer diagram
as subcategory of

sLex∆0/ × (LexG(Γ/x)/ × Lex(∆1)]×G(Γ/x)/ × Lex(∆1)]×τ/)
2

Coslice categoriesMX/ of complete enriched categoriesM are complete, and
the forgetful functorsMX/ →M preserve limits. Similarly, limits of complete
enriched categories are complete, and the projections preserve limits. Thus K
is a complete sSet+-category, and the diagrams of solid arrows

G(E)(∆1)]

G(Γ/x) G(E)∂∆1

g

〈g0,g1〉

G(E)(∆1×∆1)]

G(E) G(E)((∂∆1)×∆1)]

〈φ0,φ1〉

φ

G(E)(∆1×∆1)]

T G(E)((∂∆1)×∆1)]

〈ψ0,ψ1〉

ψ

are natural transformations of limit-preserving functors K → sSet. Thus it
suffices by Lemma 4.59 to construct indicated extensions (g, φ, ψ) subject to
the evident equations on points.

First let us construct g. Let y : y0 → x be morphism in Γ, corresponding
to a vertex in Γ/x. Then

y x∗(y)

idx x∗(x)

x∗(y)

d

(4.37)

is a pullback square in Γ. We obtain a diagram

g1(y) g1(x∗(y0))

f(y0) g1(idx) g1(x∗(x))

g0(y) g0(x∗(y0)) t f(x)

g0(idx) g0(x∗(x)).

k
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Here the front and back faces are given by application of g0 and g1 to (4.37).
The two vertical squares on the right are given by application of φ0 and φ1 to
the morphism y : y0 → x, and the two horizontal morphisms on the bottom
are given by ψ0 and ψ1. Since the ψi and φi(y) are homotopies, we obtain a
homotopy of lower cospans of the front and back pullback squares by inverting
ψ1 and φ1(y) and composing. This induces a homotopy of pullback squares,
which includes the required edge g(y) : g0(y)→ g1(y).

To define φ we have to construct squares with boundary

g0(x∗(y)) g1(x∗(y))

f(y) f(y)

g(x∗(y))

φ0(y) φ0(y)

(the bottom edge can be arbitrary). This can be done by lifting the upper
horseshoe against the trivial cofibration given by the pushout product of the
trivial cofibration ∆{0} = (∆{0})] → (∆1)] and the cofibration ∂∆1 → ∆1.

Similarly, ψ has to be cube with boundary

g1(idx) g1(x∗(x))

t f(x)

g0(idx) g0(x∗(x))

t f(x).

ψ1

ψ0

φ(x)

Thus front and back face of this cube have to agree with ψ0 and ψ1, the right face
has to be φ(x)), and the top face has to g(x). All other faces can be arbitrary.
The left face can be constructed using the universal property of the terminal
object. This data can now be lifted against the pushout product of the trivial
cofibration ∆{0} → (∆1)] and the boundary inclusion ∂(∆1 ×∆1)→ ∆1 ×∆1

of the square.

4.4 Algebraically cofibrant strict ∞-categories

Strictification

Fix a combinatorial and simplicial model category M. Let J be a set of
representatives of isomorphism classes of κ-small trivial cofibrations for some
κ such that J is generating and closed under tensors by finite simplicial sets.
We denote by Alg(M) = AlgJ(M) the combinatorial and simplicial model
category of algebraically fibrant objects with respect to J .
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Lemma 4.75. Let i : S → T be a cofibration of finite simplicial sets S
and T , and let X be an algebraically fibrant object of M. Then the map
G(XT )→ G(XS) induced by i carries the structure of an algebraic fibration in
M which varies naturally in maps f : X → Y of algebraically fibrant objects.

Proof. Let j : A → B be a trivial cofibration in J . Then solutions of an
(enriched) lifting problem

A G(XT )

B G(XS)

j

correspond to solutions of the lifting problem

T ⊗AqS⊗A S ⊗B G(X)

S ⊗B.

i�j

Lifting problems have canonical solutions since J is closed under tensors by
finite simplicial sets, so that the map i� j is isomorphic to a map in J .

Lemma 4.76. LetM be a simplicial and combinatorial model category. Let
X ∈ ObM and let Y ∈ Alg(M). Then the map

M(G(F (X)), G(Y ))→M(X,G(Y )) (4.38)

induced by the unit ηX : X → G(F (X)) carries the structure of an algebraic
trivial Kan fibration such that maps f : X ′ → X ′ inM and maps g : Y → Y ′

in Alg(M) induce maps of algebraic trivial Kan fibrations.

Proof. Lifts of a boundary inclusion ∂∆n ⊆ ∆n against the map (4.38) corre-
spond to lifts

X G(Y ∆n
)

G(F (X)) G(Y ∂∆n
)

ηX (4.39)

inM. The vertical morphism on the right-hand side carries the structure of
an algebraic fibration which varies functorially in morphisms in Y by Lemma
4.75. The unit ηX on the left-hand side is the left part of the factorization of
X → 1 into an algebraic trivial cofibration followed by an algebraic cofibration;
in particular, ηX carries the structure of an algebraic trivial cofibration. It
follows that lifting problems as in (4.39) admits canonical solutions.
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Lemma 4.77. The composition

G(F (G(Γ))) G(Γ) G(F (G(Γ))
G(ε) ηG(Γ)

is homotopic to the identity on G(F (G(Γ))). There is a family of homotopies
ψΓ : G(ε) ◦ ηG(Γ) ' id which is natural in Γ in the sense that if f : Γ → Γ′,
then

ψΓ′ ◦G(F (G(f))) = G(F (G(f)) ◦ ψΓ.

Proof. Apply Lemma 4.76 to the square

∂∆1 Lcc(G(F (G(Γ))), G(F (G(Γ))))

∆1 Lcc(G(Γ), G(F (G(Γ))))

−◦ηG(Γ)

where the top morphism is given G(ε) ◦ ηG(Γ) and the identity on the two
vertices of ∂∆1 = ∆0 q∆0, and the bottom arrow is the identity homotopy on
ηG(Γ).

Let C = FG : sLcc→ Lcc→ sLcc be the comonad given by G and F .

Lemma 4.78. Let λ : Γ→ C(Γ) be a coalgebra. Then there is a homotopy

φλ : ηG(Γ) ' G(λ) : G(Γ)→ G(F (G(Γ))).

φλ can be constructed such that it is compatible with coalgebra morphisms, i.e.
so that if f : (Γ, λ)→ (Γ′, λ′), then φλ ◦G(F (G(f))) = G(f) ◦ φΓ′.

Proof. Set φΓ = G(λ)◦ψΓ. Then the domain of φΓ is G(λ)◦G(ε)◦ηG(Γ) = ηG(Γ),
and its codomain is G(λ).

Lemma 4.79 (Strictificaton). Let λ : Γ→ C(Γ) be a C-coalgebra and let E be
a strict lcc category. Then the inclusion

i : sLcc(Γ, E) ↪→ Lcc(G(Γ), G(E))

is the inclusion of a deformation retract r : Lcc(G(Γ), G(E))� sLcc(Γ, E), h :
id ⇒ rs. r and h are compatible with C-coalgebra morphisms in (Γ, λ) and
strict lcc functors in E.

Proof. r is defined as composite

Lcc(G(Γ), G(E)) sLcc(F (G(Γ)), E) sLcc(Γ, E).∼ −◦λ

If f is a simplex of strict lcc functors Γ → E, then the image of G(f) in
sLcc(F (G(Γ)), E) is fε, hence r(f) = fελ = f .
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The composition i ◦ r is given by the composition

Lcc(G(Γ), G(E))
∼−→ sLcc(F (G(Γ)), E)

→ Lcc(G(F (G(Γ))), G(E))

−◦G(λ)−−−−−→ Lcc(G(Γ), G(∆))

Here if we replace the last map − ◦ G(λ) by − ◦ ηG(λ), then we obtain the
identity. Thus the homotopy φΓ : ηG(Γ) ' G(λ) of Lemma 4.78 induces a
homotopy id ' r ◦ i.

Base types and context extensions

Definition 4.80. Let λ : Γ→ C(Γ) be a coalgebra. A base type in (Γ, λ) is
an object σ ∈ Γ0 such that η(σ) = λ(σ). A base term of type σ in (Γ, λ) is a
vertex s : t→ σ with t terminal such that η(s) = λ(s).

Remark 4.81. Types in a strict lcc category Γ can be equated with maps
σ : F ({x})→ Γ, where {x} denotes the minimally marked lcc sketch given by
a single object {x}. If λ : Γ→ C(Γ) is coalgebra structure on Γ, then σ is a
base type of (Γ, λ) if and only if the square

F ({x}) Γ

F (G(F ({x}))) C(Γ)

F (η)

σ

C(σ)

commutes. Note that F (η) defines coalgebra structure on F ({x}), thus the
base types can be understood as those types which are detected by coalgebra
morphisms.

Similarly, a map s : t→ σ in Γ is a base term if and only if the square

F ({k : t→ x}) Γ

F (G(F ({k : t→ x}))) C(Γ)

F (η)

s

C(s)

Here {k : t→ x} is the lcc sketch on the free-standing edge ∆1 in which object
t = ∆{0} is marked as terminal.

Proposition 4.82. Let λ : Γ→ C(Γ) be a coalgebra and let σ be a base type
in Γ. Then there exists coalgebra structure λ : Γ.σ → C(Γ.σ) such that the
following hold:



4.4. ALGEBRAICALLY COFIBRANT STRICT ∞-CATEGORIES 183

• p : (Γ, λ)→ (Γ.σ, λ.σ) is a coalgebra morphisms.

• The variable term v : t→ Γ′ is a base term.

• If f : (Γ, λ)→ (Γ′, λ′) is a coalgebra morphisms and Γ′ ` s : f(σ) is a base
term, then the induced map 〈f, s〉 : (Γ.σ, λ.σ) → (Γ′, λ′) is a coalgebra
morphism.

Proof. Note that the forgetful functor Coa sLcc→ sLcc commutes with colimits
and consider the pushout of the following span in Coa sLcc:

F ({k : t→ x}) F ({x}) Γ

F (G(F ({k : t→ x}))) F (G(F ({x}))) C(Γ).

F (η) F (η)

σ

λ

C(σ)

(4.40)

Remark 4.83. It is unlikely that Coa sLcc admits context extensions for arbitrary
types.

Proposition 4.84. Let λ : Γ→ C(Γ) be a coalgebra and let Γ ` σ be a base
type. Then there is a canonical equivalence

a : G(Γ.σ)� G(Γ/σ) : b

α : b ◦ a ' id β : a ◦ b ' id

which is preserved up to equality under coalgebra morphisms f : (Γ, λ)→ (Γ′, λ′)
in the sense that all squares in

G(Γ.σ)∆1
G(Γ.σ) G(Γ/σ) G(Γ/σ)∆1

G(Γ′.f(σ))∆1
G(Γ′.f(σ)) G((Γ′)/f(σ)) G((Γ′)/f(σ))∆1

α a

b

β

α′ a′

b′

β′

commute.

Proof. By the Strictification Lemma 4.79, there exists a strict lcc functor
(σ∗)s : Γ → Γ/σ and a homotopy ζ : σ∗ ' G((σ∗)s). Let ds be the canonical
composition of the (2, 1)-horn

idσ
d−→ σ∗(σ)

ζ(σ)−−→ (σ∗)s(σ)

in Γ/σ. Then a = G(〈(σ∗)s, ds〉). b is defined from Proposition 4.74 from the
coprojection G(p) : G(Γ)→ G(Γ.σ) and the variable Γ ` v : p(σ).



184 CHAPTER 4. THE ∞-CATEGORICAL MULTIVERSE MODEL

To obtain an equivalence β : a ◦ b ' id : G(Γ/σ) → G(Γ/σ), it suffices by
Proposition 4.74 to construct an equivalence φ : a◦b◦σ∗ ' σ∗ : G(Γ)→ G(Γ/σ)
and an equivalence

a(b(idσ)) a(b(σ∗(σ)))

idσ σ∗(σ).

a(b(d))

ψ φ(σ)

d

(4.41)

By definition of b, there is an equivalence b ◦ σ∗ ' p, and by definition of
a, we have a ◦ p = (σ∗)s ' σ∗. Composing these equivalences, we obtain an
equivalence φ : a ◦ b ◦ σ∗ ' σ∗ as required. By definition of b, there is an
equivalence

b(idσ) b(σ∗(σ))

tv p(σ)

b(d)

v

of pointed objects in G(Γ.σ). Combining the image of this equivalence and the
definition of a(v), we obtain a diagram

a(b(idσ)) a(b(σ∗(σ)))

a(tv) a(p(σ))

idσ σ∗(σ)

a(b(d))

a(v)=ds

d

(4.42)

The value of φ at σ is a composition of the two right vertical maps. Thus the
two squares (4.42) can be composed such that the composition of the right two
vertical maps agrees with φ(σ), so that the composition is of the form (4.41).

Recall that λ.σ : Γ.σ → F (G(Γ.σ)) is defined as pushout of the cospan
(4.40). The underlying pushout diagram in sLcc has a universal property with
respect to 1-simplices of maps, and the strictification operator due to Lemma
4.79 is compatible with coalgebra morphisms. Thus we can successively reduce
the construction of α to the construction of

1. an equivalence (b ◦ a)s ' ids = id : Γ.σ → Γ.σ;

2. an equivalence φ : (b ◦ a)s ◦ p ' p : Γ → Γ.σ and an equivalence
ψ : (b ◦ a)s(v) ' v in G(Γ.σ)∗ which is compatible with φ(σ); and finally

3. an equivalence φ : b◦a◦G(p) ' G(p) : G(Γ)→ G(Γ.σ) and an equivalence
ψ : (b ◦ a)(v) ' v in G(Γ.σ)∗ which is compatible with φ(σ).
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Let us construct the data φ, ψ as in point 3. By definition of a and b, we have
a ◦G(p) = G((σ∗)s ' σ∗, and b ◦ σ∗ ' p, which defines φ. There are squares

b(a(tv)) b(a(p(σ)))

b(idσ) b((σ∗)s(σ))

b(idσ) b(σ∗(σ))

tv p(σ)

v

b(ds)

=

d

v

arising from the definitions of a, ds and b. The homotopy φ(σ) is a composition
of the three right faces. Thus a composition of the three squares with fixed
composition φ(σ) of the right right faces is a homotopy ψ as required.

Proposition 4.85. The covariant cwf Coa sLcc supports dependent product
types along base types. That is, if Γ ` σ is a base type and Γ.σ ` τ is an
arbitrary type, then there is a type Γ ` Πσ τ with term constructors

Γ.σ ` t : τ

Γ ` lam(t) : Πσ τ

Γ ` u : Πσ τ

Γ.σ ` app(u) : τ

Γ.σ ` t : τ

Γ.σ ` appβ(t) : Id (app(lam(t))) t

Γ ` u1 : Πσ τ Γ ` u2 : Πσ τ Γ.σ ` h : Id (app(u1)) (app(u2))

Γ ` funext(h) : Idu1 u2

Γ ` u : Πσ τ

Γ ` funextβ(u) : Id funext(refl(app(u))) refl(u)

Proof. Given a type Γ.σ ` τ , we define Γ ` Πσ τ by application of the functor

U(G(Γ.σ)) U(G(Γ/σ)) U(G(Γ/1)) U(G(Γ))a Π!σ (4.43)

to τ , where !σ : σ → 1 is the canonical map to the terminal object in Γ. a is lcc
and hence preserves terminal objects, Πσ preserves them because it is a right
adjoint, and U(G(Γ/1))→ U(G(Γ)) is preserves terminal objects because it is
a categorical equivalence. Thus if Γ.σ ` t : τ , then the image of 1t

t−→ τ under
the functor (4.43) defines a term Γ ` lam(t) : Πσ τ .
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Now let Γ ` u : Πσ τ . Pulling back u along σ, we obtain a diagram

· 1u

· · Πσ τ

σ 1

σ σ 1

σ∗(1u) u

a(τ) σ∗(Πσ τ)

σ∗(u)

ε

(4.44)

with the counit ε = ε(a(τ)) of the adjunction σ∗ ` Πσ. Now ε ◦ σ∗(u) :
σ∗(1u)→ a(τ) in Γ/σ, and the composite

app(u) : b(σ∗(1u))
b(ε◦σ∗(u))−−−−−−→ b(a(τ))

α(τ)−−−→ τ

is a term Γ.σ ` app(u) : τ as required.
Now let Γ.σ ` t : τ and let us construct Γ.σ ` appβ(t) : Id (app(lam(t))) t.

Combining the definition of lam(t) with diagram (4.44), we obtain a diagram

· · 1lam(t)

· · Πσ τ

σ σ 1

σ σ 1

a(1t)

a(t)

σ∗(1lam(t)) lam(t)

a(τ)

From left to right, the squares along the y and z axes are given by t, by
σ∗(lam(t)) and by Πσ(a(t)). The left cube is given by ε(a(t)) and witnesses
an equivalence h : ε(a(τ)) ◦ σ∗ ' a(t) of maps in Γ/σ which restricts to the
identity on the codomain. Then b(h) ◦ α(τ) is an equivalence app(lam(t)) ' t
in Γ.σ, which induces the required term Γ.σ ` appβ(t) : Id (app(lam(t))) t.

Next let Γ ` u0 : Πσ τ , Γ ` u1 : Πσ τ , Γ.σ ` h : Id app(u0) app(u1) and
let us define the function extensionality term Γ ` funext(u) : Idu0 u1. By the
definition of the application terms of the diagram (4.44) and the homotopy
inverse a to b (with natural equivalence β : a ◦ b ' id), we obtain from h a
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diagram

a(τ) σ∗(1u0)

a(τ) σ∗(1u1)

a(τ) σ∗(Πσ τ)

=
=

ε◦σ∗(u0)

σ∗(u0)

=

ε◦σ∗(u1)

σ∗(u1)

ε

(4.45)
in Γ/σ. This diagram induces an equivalence u0 ' u1 via a lift against j̃1

Π,
hence a term Γ ` funext(h) : Idu0 u1.

Finally, given Γ ` u : Πσ τ , let us construct the term Γ ` funextβ :
Id funext(refl(app(u)) refl(u). For h = refl(u), the diagram (4.45) is equivalent
to a diagram in which the square with vertices a(τ) and σ∗(1ui) is degenerated.
This degenerated diagram can be extended along j̃1

Π using the degenerated ho-
motopy on u = u0 = u1. By lifting against the pushout product of ∂∆1 ⊆ (∆1)]

and j̃1
Π, we obtain a homotopy of the homotopy u0 ' u1 as in the construction

of funext(refl(u)) with the degenerated homotopy on u. This homotopy of
homotopies induces the term Γ ` funextβ : Id funext(refl(app(u)) refl(u).
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